MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodser Structured version   Unicode version

Theorem fprodser 13946
Description: A finite product expressed in terms of a partial product of an infinite sequence. The recursive definition of a finite product follows from here. (Contributed by Scott Fenton, 14-Dec-2017.)
Hypotheses
Ref Expression
fprodser.1  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  =  A )
fprodser.2  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
fprodser.3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
Assertion
Ref Expression
fprodser  |-  ( ph  ->  prod_ k  e.  ( M ... N ) A  =  (  seq M (  x.  ,  F ) `  N
) )
Distinct variable groups:    k, F    ph, k    k, M    k, N
Allowed substitution hint:    A( k)

Proof of Theorem fprodser
Dummy variables  j  m  n  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodfc 13942 . 2  |-  prod_ j  e.  ( M ... N
) ( ( k  e.  ( M ... N )  |->  A ) `
 j )  = 
prod_ k  e.  ( M ... N ) A
2 fveq2 5825 . . . 4  |-  ( j  =  ( ( n  e.  ( 1 ... ( N  +  ( 1  -  M ) ) )  |->  ( n  +  ( M  - 
1 ) ) ) `
 m )  -> 
( ( k  e.  ( M ... N
)  |->  A ) `  j )  =  ( ( k  e.  ( M ... N ) 
|->  A ) `  (
( n  e.  ( 1 ... ( N  +  ( 1  -  M ) ) ) 
|->  ( n  +  ( M  -  1 ) ) ) `  m
) ) )
3 fprodser.2 . . . . . . . . 9  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
4 eluzelz 11119 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
53, 4syl 17 . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
65zcnd 10992 . . . . . . 7  |-  ( ph  ->  N  e.  CC )
7 eluzel2 11115 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
83, 7syl 17 . . . . . . . 8  |-  ( ph  ->  M  e.  ZZ )
98zcnd 10992 . . . . . . 7  |-  ( ph  ->  M  e.  CC )
10 1cnd 9610 . . . . . . 7  |-  ( ph  ->  1  e.  CC )
116, 9, 10subadd23d 9959 . . . . . 6  |-  ( ph  ->  ( ( N  -  M )  +  1 )  =  ( N  +  ( 1  -  M ) ) )
1211eqcomd 2434 . . . . 5  |-  ( ph  ->  ( N  +  ( 1  -  M ) )  =  ( ( N  -  M )  +  1 ) )
13 uznn0sub 11141 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  -  M )  e.  NN0 )
143, 13syl 17 . . . . . 6  |-  ( ph  ->  ( N  -  M
)  e.  NN0 )
15 nn0p1nn 10860 . . . . . 6  |-  ( ( N  -  M )  e.  NN0  ->  ( ( N  -  M )  +  1 )  e.  NN )
1614, 15syl 17 . . . . 5  |-  ( ph  ->  ( ( N  -  M )  +  1 )  e.  NN )
1712, 16eqeltrd 2506 . . . 4  |-  ( ph  ->  ( N  +  ( 1  -  M ) )  e.  NN )
1810, 9pncan3d 9940 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  +  ( M  -  1 ) )  =  M )
196, 10, 9pnpncand 9992 . . . . . . . . . . 11  |-  ( ph  ->  ( ( N  +  ( 1  -  M
) )  +  ( M  -  1 ) )  =  N )
2018, 19oveq12d 6267 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1  +  ( M  -  1 ) ) ... (
( N  +  ( 1  -  M ) )  +  ( M  -  1 ) ) )  =  ( M ... N ) )
2120eleq2d 2491 . . . . . . . . 9  |-  ( ph  ->  ( p  e.  ( ( 1  +  ( M  -  1 ) ) ... ( ( N  +  ( 1  -  M ) )  +  ( M  - 
1 ) ) )  <-> 
p  e.  ( M ... N ) ) )
2221biimpa 486 . . . . . . . 8  |-  ( (
ph  /\  p  e.  ( ( 1  +  ( M  -  1 ) ) ... (
( N  +  ( 1  -  M ) )  +  ( M  -  1 ) ) ) )  ->  p  e.  ( M ... N
) )
23 elfzelz 11751 . . . . . . . . . . . . 13  |-  ( p  e.  ( M ... N )  ->  p  e.  ZZ )
2423zcnd 10992 . . . . . . . . . . . 12  |-  ( p  e.  ( M ... N )  ->  p  e.  CC )
2524adantl 467 . . . . . . . . . . 11  |-  ( (
ph  /\  p  e.  ( M ... N ) )  ->  p  e.  CC )
26 peano2zm 10931 . . . . . . . . . . . . . 14  |-  ( M  e.  ZZ  ->  ( M  -  1 )  e.  ZZ )
278, 26syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( M  -  1 )  e.  ZZ )
2827zcnd 10992 . . . . . . . . . . . 12  |-  ( ph  ->  ( M  -  1 )  e.  CC )
2928adantr 466 . . . . . . . . . . 11  |-  ( (
ph  /\  p  e.  ( M ... N ) )  ->  ( M  -  1 )  e.  CC )
3025, 29npcand 9941 . . . . . . . . . 10  |-  ( (
ph  /\  p  e.  ( M ... N ) )  ->  ( (
p  -  ( M  -  1 ) )  +  ( M  - 
1 ) )  =  p )
31 simpr 462 . . . . . . . . . 10  |-  ( (
ph  /\  p  e.  ( M ... N ) )  ->  p  e.  ( M ... N ) )
3230, 31eqeltrd 2506 . . . . . . . . 9  |-  ( (
ph  /\  p  e.  ( M ... N ) )  ->  ( (
p  -  ( M  -  1 ) )  +  ( M  - 
1 ) )  e.  ( M ... N
) )
33 ovex 6277 . . . . . . . . . 10  |-  ( p  -  ( M  - 
1 ) )  e. 
_V
34 oveq1 6256 . . . . . . . . . . 11  |-  ( n  =  ( p  -  ( M  -  1
) )  ->  (
n  +  ( M  -  1 ) )  =  ( ( p  -  ( M  - 
1 ) )  +  ( M  -  1 ) ) )
3534eleq1d 2490 . . . . . . . . . 10  |-  ( n  =  ( p  -  ( M  -  1
) )  ->  (
( n  +  ( M  -  1 ) )  e.  ( M ... N )  <->  ( (
p  -  ( M  -  1 ) )  +  ( M  - 
1 ) )  e.  ( M ... N
) ) )
3633, 35sbcie 3277 . . . . . . . . 9  |-  ( [. ( p  -  ( M  -  1 ) )  /  n ]. ( n  +  ( M  -  1 ) )  e.  ( M ... N )  <->  ( (
p  -  ( M  -  1 ) )  +  ( M  - 
1 ) )  e.  ( M ... N
) )
3732, 36sylibr 215 . . . . . . . 8  |-  ( (
ph  /\  p  e.  ( M ... N ) )  ->  [. ( p  -  ( M  - 
1 ) )  /  n ]. ( n  +  ( M  -  1
) )  e.  ( M ... N ) )
3822, 37syldan 472 . . . . . . 7  |-  ( (
ph  /\  p  e.  ( ( 1  +  ( M  -  1 ) ) ... (
( N  +  ( 1  -  M ) )  +  ( M  -  1 ) ) ) )  ->  [. (
p  -  ( M  -  1 ) )  /  n ]. (
n  +  ( M  -  1 ) )  e.  ( M ... N ) )
3938ralrimiva 2779 . . . . . 6  |-  ( ph  ->  A. p  e.  ( ( 1  +  ( M  -  1 ) ) ... ( ( N  +  ( 1  -  M ) )  +  ( M  - 
1 ) ) )
[. ( p  -  ( M  -  1
) )  /  n ]. ( n  +  ( M  -  1 ) )  e.  ( M ... N ) )
40 1zzd 10919 . . . . . . 7  |-  ( ph  ->  1  e.  ZZ )
4117nnzd 10990 . . . . . . 7  |-  ( ph  ->  ( N  +  ( 1  -  M ) )  e.  ZZ )
42 fzshftral 11833 . . . . . . 7  |-  ( ( 1  e.  ZZ  /\  ( N  +  (
1  -  M ) )  e.  ZZ  /\  ( M  -  1
)  e.  ZZ )  ->  ( A. n  e.  ( 1 ... ( N  +  ( 1  -  M ) ) ) ( n  +  ( M  -  1
) )  e.  ( M ... N )  <->  A. p  e.  (
( 1  +  ( M  -  1 ) ) ... ( ( N  +  ( 1  -  M ) )  +  ( M  - 
1 ) ) )
[. ( p  -  ( M  -  1
) )  /  n ]. ( n  +  ( M  -  1 ) )  e.  ( M ... N ) ) )
4340, 41, 27, 42syl3anc 1264 . . . . . 6  |-  ( ph  ->  ( A. n  e.  ( 1 ... ( N  +  ( 1  -  M ) ) ) ( n  +  ( M  -  1
) )  e.  ( M ... N )  <->  A. p  e.  (
( 1  +  ( M  -  1 ) ) ... ( ( N  +  ( 1  -  M ) )  +  ( M  - 
1 ) ) )
[. ( p  -  ( M  -  1
) )  /  n ]. ( n  +  ( M  -  1 ) )  e.  ( M ... N ) ) )
4439, 43mpbird 235 . . . . 5  |-  ( ph  ->  A. n  e.  ( 1 ... ( N  +  ( 1  -  M ) ) ) ( n  +  ( M  -  1 ) )  e.  ( M ... N ) )
458adantr 466 . . . . . . . . . . 11  |-  ( (
ph  /\  p  e.  ( M ... N ) )  ->  M  e.  ZZ )
465adantr 466 . . . . . . . . . . 11  |-  ( (
ph  /\  p  e.  ( M ... N ) )  ->  N  e.  ZZ )
4723adantl 467 . . . . . . . . . . 11  |-  ( (
ph  /\  p  e.  ( M ... N ) )  ->  p  e.  ZZ )
4827adantr 466 . . . . . . . . . . 11  |-  ( (
ph  /\  p  e.  ( M ... N ) )  ->  ( M  -  1 )  e.  ZZ )
49 fzsubel 11785 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( p  e.  ZZ  /\  ( M  -  1 )  e.  ZZ ) )  -> 
( p  e.  ( M ... N )  <-> 
( p  -  ( M  -  1 ) )  e.  ( ( M  -  ( M  -  1 ) ) ... ( N  -  ( M  -  1
) ) ) ) )
5045, 46, 47, 48, 49syl22anc 1265 . . . . . . . . . 10  |-  ( (
ph  /\  p  e.  ( M ... N ) )  ->  ( p  e.  ( M ... N
)  <->  ( p  -  ( M  -  1
) )  e.  ( ( M  -  ( M  -  1 ) ) ... ( N  -  ( M  - 
1 ) ) ) ) )
5131, 50mpbid 213 . . . . . . . . 9  |-  ( (
ph  /\  p  e.  ( M ... N ) )  ->  ( p  -  ( M  - 
1 ) )  e.  ( ( M  -  ( M  -  1
) ) ... ( N  -  ( M  -  1 ) ) ) )
529, 10nncand 9942 . . . . . . . . . . 11  |-  ( ph  ->  ( M  -  ( M  -  1 ) )  =  1 )
536, 9, 10subsub2d 9966 . . . . . . . . . . 11  |-  ( ph  ->  ( N  -  ( M  -  1 ) )  =  ( N  +  ( 1  -  M ) ) )
5452, 53oveq12d 6267 . . . . . . . . . 10  |-  ( ph  ->  ( ( M  -  ( M  -  1
) ) ... ( N  -  ( M  -  1 ) ) )  =  ( 1 ... ( N  +  ( 1  -  M
) ) ) )
5554adantr 466 . . . . . . . . 9  |-  ( (
ph  /\  p  e.  ( M ... N ) )  ->  ( ( M  -  ( M  -  1 ) ) ... ( N  -  ( M  -  1
) ) )  =  ( 1 ... ( N  +  ( 1  -  M ) ) ) )
5651, 55eleqtrd 2508 . . . . . . . 8  |-  ( (
ph  /\  p  e.  ( M ... N ) )  ->  ( p  -  ( M  - 
1 ) )  e.  ( 1 ... ( N  +  ( 1  -  M ) ) ) )
5730eqcomd 2434 . . . . . . . 8  |-  ( (
ph  /\  p  e.  ( M ... N ) )  ->  p  =  ( ( p  -  ( M  -  1
) )  +  ( M  -  1 ) ) )
5834eqeq2d 2438 . . . . . . . . 9  |-  ( n  =  ( p  -  ( M  -  1
) )  ->  (
p  =  ( n  +  ( M  - 
1 ) )  <->  p  =  ( ( p  -  ( M  -  1
) )  +  ( M  -  1 ) ) ) )
5958rspcev 3125 . . . . . . . 8  |-  ( ( ( p  -  ( M  -  1 ) )  e.  ( 1 ... ( N  +  ( 1  -  M
) ) )  /\  p  =  ( (
p  -  ( M  -  1 ) )  +  ( M  - 
1 ) ) )  ->  E. n  e.  ( 1 ... ( N  +  ( 1  -  M ) ) ) p  =  ( n  +  ( M  - 
1 ) ) )
6056, 57, 59syl2anc 665 . . . . . . 7  |-  ( (
ph  /\  p  e.  ( M ... N ) )  ->  E. n  e.  ( 1 ... ( N  +  ( 1  -  M ) ) ) p  =  ( n  +  ( M  -  1 ) ) )
61 elfzelz 11751 . . . . . . . . . . . 12  |-  ( n  e.  ( 1 ... ( N  +  ( 1  -  M ) ) )  ->  n  e.  ZZ )
6261zcnd 10992 . . . . . . . . . . 11  |-  ( n  e.  ( 1 ... ( N  +  ( 1  -  M ) ) )  ->  n  e.  CC )
63 elfzelz 11751 . . . . . . . . . . . 12  |-  ( m  e.  ( 1 ... ( N  +  ( 1  -  M ) ) )  ->  m  e.  ZZ )
6463zcnd 10992 . . . . . . . . . . 11  |-  ( m  e.  ( 1 ... ( N  +  ( 1  -  M ) ) )  ->  m  e.  CC )
6562, 64anim12i 568 . . . . . . . . . 10  |-  ( ( n  e.  ( 1 ... ( N  +  ( 1  -  M
) ) )  /\  m  e.  ( 1 ... ( N  +  ( 1  -  M
) ) ) )  ->  ( n  e.  CC  /\  m  e.  CC ) )
66 eqtr2 2448 . . . . . . . . . . 11  |-  ( ( p  =  ( n  +  ( M  - 
1 ) )  /\  p  =  ( m  +  ( M  - 
1 ) ) )  ->  ( n  +  ( M  -  1
) )  =  ( m  +  ( M  -  1 ) ) )
67 simprl 762 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( n  e.  CC  /\  m  e.  CC ) )  ->  n  e.  CC )
68 simprr 764 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( n  e.  CC  /\  m  e.  CC ) )  ->  m  e.  CC )
6928adantr 466 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( n  e.  CC  /\  m  e.  CC ) )  -> 
( M  -  1 )  e.  CC )
7067, 68, 69addcan2d 9788 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  CC  /\  m  e.  CC ) )  -> 
( ( n  +  ( M  -  1
) )  =  ( m  +  ( M  -  1 ) )  <-> 
n  =  m ) )
7166, 70syl5ib 222 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  CC  /\  m  e.  CC ) )  -> 
( ( p  =  ( n  +  ( M  -  1 ) )  /\  p  =  ( m  +  ( M  -  1 ) ) )  ->  n  =  m ) )
7265, 71sylan2 476 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( N  +  ( 1  -  M ) ) )  /\  m  e.  ( 1 ... ( N  +  ( 1  -  M ) ) ) ) )  -> 
( ( p  =  ( n  +  ( M  -  1 ) )  /\  p  =  ( m  +  ( M  -  1 ) ) )  ->  n  =  m ) )
7372ralrimivva 2786 . . . . . . . 8  |-  ( ph  ->  A. n  e.  ( 1 ... ( N  +  ( 1  -  M ) ) ) A. m  e.  ( 1 ... ( N  +  ( 1  -  M ) ) ) ( ( p  =  ( n  +  ( M  -  1 ) )  /\  p  =  ( m  +  ( M  -  1 ) ) )  ->  n  =  m ) )
7473adantr 466 . . . . . . 7  |-  ( (
ph  /\  p  e.  ( M ... N ) )  ->  A. n  e.  ( 1 ... ( N  +  ( 1  -  M ) ) ) A. m  e.  ( 1 ... ( N  +  ( 1  -  M ) ) ) ( ( p  =  ( n  +  ( M  -  1
) )  /\  p  =  ( m  +  ( M  -  1
) ) )  ->  n  =  m )
)
75 oveq1 6256 . . . . . . . . 9  |-  ( n  =  m  ->  (
n  +  ( M  -  1 ) )  =  ( m  +  ( M  -  1
) ) )
7675eqeq2d 2438 . . . . . . . 8  |-  ( n  =  m  ->  (
p  =  ( n  +  ( M  - 
1 ) )  <->  p  =  ( m  +  ( M  -  1 ) ) ) )
7776reu4 3207 . . . . . . 7  |-  ( E! n  e.  ( 1 ... ( N  +  ( 1  -  M
) ) ) p  =  ( n  +  ( M  -  1
) )  <->  ( E. n  e.  ( 1 ... ( N  +  ( 1  -  M
) ) ) p  =  ( n  +  ( M  -  1
) )  /\  A. n  e.  ( 1 ... ( N  +  ( 1  -  M
) ) ) A. m  e.  ( 1 ... ( N  +  ( 1  -  M
) ) ) ( ( p  =  ( n  +  ( M  -  1 ) )  /\  p  =  ( m  +  ( M  -  1 ) ) )  ->  n  =  m ) ) )
7860, 74, 77sylanbrc 668 . . . . . 6  |-  ( (
ph  /\  p  e.  ( M ... N ) )  ->  E! n  e.  ( 1 ... ( N  +  ( 1  -  M ) ) ) p  =  ( n  +  ( M  -  1 ) ) )
7978ralrimiva 2779 . . . . 5  |-  ( ph  ->  A. p  e.  ( M ... N ) E! n  e.  ( 1 ... ( N  +  ( 1  -  M ) ) ) p  =  ( n  +  ( M  - 
1 ) ) )
80 eqid 2428 . . . . . 6  |-  ( n  e.  ( 1 ... ( N  +  ( 1  -  M ) ) )  |->  ( n  +  ( M  - 
1 ) ) )  =  ( n  e.  ( 1 ... ( N  +  ( 1  -  M ) ) )  |->  ( n  +  ( M  -  1
) ) )
8180f1ompt 6003 . . . . 5  |-  ( ( n  e.  ( 1 ... ( N  +  ( 1  -  M
) ) )  |->  ( n  +  ( M  -  1 ) ) ) : ( 1 ... ( N  +  ( 1  -  M
) ) ) -1-1-onto-> ( M ... N )  <->  ( A. n  e.  ( 1 ... ( N  +  ( 1  -  M
) ) ) ( n  +  ( M  -  1 ) )  e.  ( M ... N )  /\  A. p  e.  ( M ... N ) E! n  e.  ( 1 ... ( N  +  ( 1  -  M ) ) ) p  =  ( n  +  ( M  -  1 ) ) ) )
8244, 79, 81sylanbrc 668 . . . 4  |-  ( ph  ->  ( n  e.  ( 1 ... ( N  +  ( 1  -  M ) ) ) 
|->  ( n  +  ( M  -  1 ) ) ) : ( 1 ... ( N  +  ( 1  -  M ) ) ) -1-1-onto-> ( M ... N ) )
83 fprodser.3 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
84 eqid 2428 . . . . . 6  |-  ( k  e.  ( M ... N )  |->  A )  =  ( k  e.  ( M ... N
)  |->  A )
8583, 84fmptd 6005 . . . . 5  |-  ( ph  ->  ( k  e.  ( M ... N ) 
|->  A ) : ( M ... N ) --> CC )
8685ffvelrnda 5981 . . . 4  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  ( (
k  e.  ( M ... N )  |->  A ) `  j )  e.  CC )
87 simpr 462 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( 1 ... ( N  +  ( 1  -  M ) ) ) )  ->  m  e.  ( 1 ... ( N  +  ( 1  -  M ) ) ) )
88 1zzd 10919 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  ( 1 ... ( N  +  ( 1  -  M ) ) ) )  ->  1  e.  ZZ )
8941adantr 466 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  ( 1 ... ( N  +  ( 1  -  M ) ) ) )  ->  ( N  +  ( 1  -  M ) )  e.  ZZ )
9063adantl 467 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  ( 1 ... ( N  +  ( 1  -  M ) ) ) )  ->  m  e.  ZZ )
9127adantr 466 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  ( 1 ... ( N  +  ( 1  -  M ) ) ) )  ->  ( M  -  1 )  e.  ZZ )
92 fzaddel 11784 . . . . . . . . 9  |-  ( ( ( 1  e.  ZZ  /\  ( N  +  ( 1  -  M ) )  e.  ZZ )  /\  ( m  e.  ZZ  /\  ( M  -  1 )  e.  ZZ ) )  -> 
( m  e.  ( 1 ... ( N  +  ( 1  -  M ) ) )  <-> 
( m  +  ( M  -  1 ) )  e.  ( ( 1  +  ( M  -  1 ) ) ... ( ( N  +  ( 1  -  M ) )  +  ( M  -  1 ) ) ) ) )
9388, 89, 90, 91, 92syl22anc 1265 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( 1 ... ( N  +  ( 1  -  M ) ) ) )  ->  (
m  e.  ( 1 ... ( N  +  ( 1  -  M
) ) )  <->  ( m  +  ( M  - 
1 ) )  e.  ( ( 1  +  ( M  -  1 ) ) ... (
( N  +  ( 1  -  M ) )  +  ( M  -  1 ) ) ) ) )
9487, 93mpbid 213 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( 1 ... ( N  +  ( 1  -  M ) ) ) )  ->  (
m  +  ( M  -  1 ) )  e.  ( ( 1  +  ( M  - 
1 ) ) ... ( ( N  +  ( 1  -  M
) )  +  ( M  -  1 ) ) ) )
9520adantr 466 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( 1 ... ( N  +  ( 1  -  M ) ) ) )  ->  (
( 1  +  ( M  -  1 ) ) ... ( ( N  +  ( 1  -  M ) )  +  ( M  - 
1 ) ) )  =  ( M ... N ) )
9694, 95eleqtrd 2508 . . . . . 6  |-  ( (
ph  /\  m  e.  ( 1 ... ( N  +  ( 1  -  M ) ) ) )  ->  (
m  +  ( M  -  1 ) )  e.  ( M ... N ) )
97 fprodser.1 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  =  A )
9897ralrimiva 2779 . . . . . . 7  |-  ( ph  ->  A. k  e.  ( M ... N ) ( F `  k
)  =  A )
99 nfcsb1v 3354 . . . . . . . . 9  |-  F/_ k [_ ( m  +  ( M  -  1 ) )  /  k ]_ A
10099nfeq2 2584 . . . . . . . 8  |-  F/ k ( F `  (
m  +  ( M  -  1 ) ) )  =  [_ (
m  +  ( M  -  1 ) )  /  k ]_ A
101 fveq2 5825 . . . . . . . . 9  |-  ( k  =  ( m  +  ( M  -  1
) )  ->  ( F `  k )  =  ( F `  ( m  +  ( M  -  1 ) ) ) )
102 csbeq1a 3347 . . . . . . . . 9  |-  ( k  =  ( m  +  ( M  -  1
) )  ->  A  =  [_ ( m  +  ( M  -  1
) )  /  k ]_ A )
103101, 102eqeq12d 2443 . . . . . . . 8  |-  ( k  =  ( m  +  ( M  -  1
) )  ->  (
( F `  k
)  =  A  <->  ( F `  ( m  +  ( M  -  1 ) ) )  =  [_ ( m  +  ( M  -  1 ) )  /  k ]_ A ) )
104100, 103rspc 3119 . . . . . . 7  |-  ( ( m  +  ( M  -  1 ) )  e.  ( M ... N )  ->  ( A. k  e.  ( M ... N ) ( F `  k )  =  A  ->  ( F `  ( m  +  ( M  - 
1 ) ) )  =  [_ ( m  +  ( M  - 
1 ) )  / 
k ]_ A ) )
10598, 104mpan9 471 . . . . . 6  |-  ( (
ph  /\  ( m  +  ( M  - 
1 ) )  e.  ( M ... N
) )  ->  ( F `  ( m  +  ( M  - 
1 ) ) )  =  [_ ( m  +  ( M  - 
1 ) )  / 
k ]_ A )
10696, 105syldan 472 . . . . 5  |-  ( (
ph  /\  m  e.  ( 1 ... ( N  +  ( 1  -  M ) ) ) )  ->  ( F `  ( m  +  ( M  - 
1 ) ) )  =  [_ ( m  +  ( M  - 
1 ) )  / 
k ]_ A )
107 f1of 5774 . . . . . . . 8  |-  ( ( n  e.  ( 1 ... ( N  +  ( 1  -  M
) ) )  |->  ( n  +  ( M  -  1 ) ) ) : ( 1 ... ( N  +  ( 1  -  M
) ) ) -1-1-onto-> ( M ... N )  -> 
( n  e.  ( 1 ... ( N  +  ( 1  -  M ) ) ) 
|->  ( n  +  ( M  -  1 ) ) ) : ( 1 ... ( N  +  ( 1  -  M ) ) ) --> ( M ... N
) )
10882, 107syl 17 . . . . . . 7  |-  ( ph  ->  ( n  e.  ( 1 ... ( N  +  ( 1  -  M ) ) ) 
|->  ( n  +  ( M  -  1 ) ) ) : ( 1 ... ( N  +  ( 1  -  M ) ) ) --> ( M ... N
) )
109 fvco3 5902 . . . . . . 7  |-  ( ( ( n  e.  ( 1 ... ( N  +  ( 1  -  M ) ) ) 
|->  ( n  +  ( M  -  1 ) ) ) : ( 1 ... ( N  +  ( 1  -  M ) ) ) --> ( M ... N
)  /\  m  e.  ( 1 ... ( N  +  ( 1  -  M ) ) ) )  ->  (
( F  o.  (
n  e.  ( 1 ... ( N  +  ( 1  -  M
) ) )  |->  ( n  +  ( M  -  1 ) ) ) ) `  m
)  =  ( F `
 ( ( n  e.  ( 1 ... ( N  +  ( 1  -  M ) ) )  |->  ( n  +  ( M  - 
1 ) ) ) `
 m ) ) )
110108, 109sylan 473 . . . . . 6  |-  ( (
ph  /\  m  e.  ( 1 ... ( N  +  ( 1  -  M ) ) ) )  ->  (
( F  o.  (
n  e.  ( 1 ... ( N  +  ( 1  -  M
) ) )  |->  ( n  +  ( M  -  1 ) ) ) ) `  m
)  =  ( F `
 ( ( n  e.  ( 1 ... ( N  +  ( 1  -  M ) ) )  |->  ( n  +  ( M  - 
1 ) ) ) `
 m ) ) )
111 ovex 6277 . . . . . . . . 9  |-  ( m  +  ( M  - 
1 ) )  e. 
_V
11275, 80, 111fvmpt 5908 . . . . . . . 8  |-  ( m  e.  ( 1 ... ( N  +  ( 1  -  M ) ) )  ->  (
( n  e.  ( 1 ... ( N  +  ( 1  -  M ) ) ) 
|->  ( n  +  ( M  -  1 ) ) ) `  m
)  =  ( m  +  ( M  - 
1 ) ) )
113112adantl 467 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( 1 ... ( N  +  ( 1  -  M ) ) ) )  ->  (
( n  e.  ( 1 ... ( N  +  ( 1  -  M ) ) ) 
|->  ( n  +  ( M  -  1 ) ) ) `  m
)  =  ( m  +  ( M  - 
1 ) ) )
114113fveq2d 5829 . . . . . 6  |-  ( (
ph  /\  m  e.  ( 1 ... ( N  +  ( 1  -  M ) ) ) )  ->  ( F `  ( (
n  e.  ( 1 ... ( N  +  ( 1  -  M
) ) )  |->  ( n  +  ( M  -  1 ) ) ) `  m ) )  =  ( F `
 ( m  +  ( M  -  1
) ) ) )
115110, 114eqtrd 2462 . . . . 5  |-  ( (
ph  /\  m  e.  ( 1 ... ( N  +  ( 1  -  M ) ) ) )  ->  (
( F  o.  (
n  e.  ( 1 ... ( N  +  ( 1  -  M
) ) )  |->  ( n  +  ( M  -  1 ) ) ) ) `  m
)  =  ( F `
 ( m  +  ( M  -  1
) ) ) )
116113fveq2d 5829 . . . . . 6  |-  ( (
ph  /\  m  e.  ( 1 ... ( N  +  ( 1  -  M ) ) ) )  ->  (
( k  e.  ( M ... N ) 
|->  A ) `  (
( n  e.  ( 1 ... ( N  +  ( 1  -  M ) ) ) 
|->  ( n  +  ( M  -  1 ) ) ) `  m
) )  =  ( ( k  e.  ( M ... N ) 
|->  A ) `  (
m  +  ( M  -  1 ) ) ) )
11783ralrimiva 2779 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  ( M ... N ) A  e.  CC )
11899nfel1 2583 . . . . . . . . . 10  |-  F/ k
[_ ( m  +  ( M  -  1
) )  /  k ]_ A  e.  CC
119102eleq1d 2490 . . . . . . . . . 10  |-  ( k  =  ( m  +  ( M  -  1
) )  ->  ( A  e.  CC  <->  [_ ( m  +  ( M  - 
1 ) )  / 
k ]_ A  e.  CC ) )
120118, 119rspc 3119 . . . . . . . . 9  |-  ( ( m  +  ( M  -  1 ) )  e.  ( M ... N )  ->  ( A. k  e.  ( M ... N ) A  e.  CC  ->  [_ (
m  +  ( M  -  1 ) )  /  k ]_ A  e.  CC ) )
121117, 120mpan9 471 . . . . . . . 8  |-  ( (
ph  /\  ( m  +  ( M  - 
1 ) )  e.  ( M ... N
) )  ->  [_ (
m  +  ( M  -  1 ) )  /  k ]_ A  e.  CC )
12296, 121syldan 472 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( 1 ... ( N  +  ( 1  -  M ) ) ) )  ->  [_ (
m  +  ( M  -  1 ) )  /  k ]_ A  e.  CC )
12384fvmpts 5911 . . . . . . 7  |-  ( ( ( m  +  ( M  -  1 ) )  e.  ( M ... N )  /\  [_ ( m  +  ( M  -  1 ) )  /  k ]_ A  e.  CC )  ->  ( ( k  e.  ( M ... N
)  |->  A ) `  ( m  +  ( M  -  1 ) ) )  =  [_ ( m  +  ( M  -  1 ) )  /  k ]_ A )
12496, 122, 123syl2anc 665 . . . . . 6  |-  ( (
ph  /\  m  e.  ( 1 ... ( N  +  ( 1  -  M ) ) ) )  ->  (
( k  e.  ( M ... N ) 
|->  A ) `  (
m  +  ( M  -  1 ) ) )  =  [_ (
m  +  ( M  -  1 ) )  /  k ]_ A
)
125116, 124eqtrd 2462 . . . . 5  |-  ( (
ph  /\  m  e.  ( 1 ... ( N  +  ( 1  -  M ) ) ) )  ->  (
( k  e.  ( M ... N ) 
|->  A ) `  (
( n  e.  ( 1 ... ( N  +  ( 1  -  M ) ) ) 
|->  ( n  +  ( M  -  1 ) ) ) `  m
) )  =  [_ ( m  +  ( M  -  1 ) )  /  k ]_ A )
126106, 115, 1253eqtr4d 2472 . . . 4  |-  ( (
ph  /\  m  e.  ( 1 ... ( N  +  ( 1  -  M ) ) ) )  ->  (
( F  o.  (
n  e.  ( 1 ... ( N  +  ( 1  -  M
) ) )  |->  ( n  +  ( M  -  1 ) ) ) ) `  m
)  =  ( ( k  e.  ( M ... N )  |->  A ) `  ( ( n  e.  ( 1 ... ( N  +  ( 1  -  M
) ) )  |->  ( n  +  ( M  -  1 ) ) ) `  m ) ) )
1272, 17, 82, 86, 126fprod 13938 . . 3  |-  ( ph  ->  prod_ j  e.  ( M ... N ) ( ( k  e.  ( M ... N
)  |->  A ) `  j )  =  (  seq 1 (  x.  ,  ( F  o.  ( n  e.  (
1 ... ( N  +  ( 1  -  M
) ) )  |->  ( n  +  ( M  -  1 ) ) ) ) ) `  ( N  +  (
1  -  M ) ) ) )
128 nnuz 11145 . . . . 5  |-  NN  =  ( ZZ>= `  1 )
12917, 128syl6eleq 2516 . . . 4  |-  ( ph  ->  ( N  +  ( 1  -  M ) )  e.  ( ZZ>= ` 
1 ) )
130129, 27, 115seqshft2 12189 . . 3  |-  ( ph  ->  (  seq 1 (  x.  ,  ( F  o.  ( n  e.  ( 1 ... ( N  +  ( 1  -  M ) ) )  |->  ( n  +  ( M  -  1
) ) ) ) ) `  ( N  +  ( 1  -  M ) ) )  =  (  seq (
1  +  ( M  -  1 ) ) (  x.  ,  F
) `  ( ( N  +  ( 1  -  M ) )  +  ( M  - 
1 ) ) ) )
13118seqeq1d 12169 . . . 4  |-  ( ph  ->  seq ( 1  +  ( M  -  1 ) ) (  x.  ,  F )  =  seq M (  x.  ,  F ) )
132131, 19fveq12d 5831 . . 3  |-  ( ph  ->  (  seq ( 1  +  ( M  - 
1 ) ) (  x.  ,  F ) `
 ( ( N  +  ( 1  -  M ) )  +  ( M  -  1 ) ) )  =  (  seq M (  x.  ,  F ) `
 N ) )
133127, 130, 1323eqtrd 2466 . 2  |-  ( ph  ->  prod_ j  e.  ( M ... N ) ( ( k  e.  ( M ... N
)  |->  A ) `  j )  =  (  seq M (  x.  ,  F ) `  N ) )
1341, 133syl5eqr 2476 1  |-  ( ph  ->  prod_ k  e.  ( M ... N ) A  =  (  seq M (  x.  ,  F ) `  N
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1872   A.wral 2714   E.wrex 2715   E!wreu 2716   [.wsbc 3242   [_csb 3338    |-> cmpt 4425    o. ccom 4800   -->wf 5540   -1-1-onto->wf1o 5543   ` cfv 5544  (class class class)co 6249   CCcc 9488   1c1 9491    + caddc 9493    x. cmul 9495    - cmin 9811   NNcn 10560   NN0cn0 10820   ZZcz 10888   ZZ>=cuz 11110   ...cfz 11735    seqcseq 12163   prod_cprod 13902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-rep 4479  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603  ax-un 6541  ax-inf2 8099  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567  ax-pre-sup 9568
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-nel 2602  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-pss 3395  df-nul 3705  df-if 3855  df-pw 3926  df-sn 3942  df-pr 3944  df-tp 3946  df-op 3948  df-uni 4163  df-int 4199  df-iun 4244  df-br 4367  df-opab 4426  df-mpt 4427  df-tr 4462  df-eprel 4707  df-id 4711  df-po 4717  df-so 4718  df-fr 4755  df-se 4756  df-we 4757  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-pred 5342  df-ord 5388  df-on 5389  df-lim 5390  df-suc 5391  df-iota 5508  df-fun 5546  df-fn 5547  df-f 5548  df-f1 5549  df-fo 5550  df-f1o 5551  df-fv 5552  df-isom 5553  df-riota 6211  df-ov 6252  df-oprab 6253  df-mpt2 6254  df-om 6651  df-1st 6751  df-2nd 6752  df-wrecs 6983  df-recs 7045  df-rdg 7083  df-1o 7137  df-oadd 7141  df-er 7318  df-en 7525  df-dom 7526  df-sdom 7527  df-fin 7528  df-sup 7909  df-oi 7978  df-card 8325  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9813  df-neg 9814  df-div 10221  df-nn 10561  df-2 10619  df-3 10620  df-n0 10821  df-z 10889  df-uz 11111  df-rp 11254  df-fz 11736  df-fzo 11867  df-seq 12164  df-exp 12223  df-hash 12466  df-cj 13106  df-re 13107  df-im 13108  df-sqrt 13242  df-abs 13243  df-clim 13495  df-prod 13903
This theorem is referenced by:  fprodfac  13970  iprodclim3  13996
  Copyright terms: Public domain W3C validator