MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodrev Structured version   Unicode version

Theorem fprodrev 13792
Description: Reversal of a finite product. (Contributed by Scott Fenton, 5-Jan-2018.)
Hypotheses
Ref Expression
fprodshft.1  |-  ( ph  ->  K  e.  ZZ )
fprodshft.2  |-  ( ph  ->  M  e.  ZZ )
fprodshft.3  |-  ( ph  ->  N  e.  ZZ )
fprodshft.4  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )
fprodrev.5  |-  ( j  =  ( K  -  k )  ->  A  =  B )
Assertion
Ref Expression
fprodrev  |-  ( ph  ->  prod_ j  e.  ( M ... N ) A  =  prod_ k  e.  ( ( K  -  N ) ... ( K  -  M )
) B )
Distinct variable groups:    A, k    B, j    j, k, ph    j, K, k    ph, k    j, M, k    j, N, k
Allowed substitution hints:    A( j)    B( k)

Proof of Theorem fprodrev
StepHypRef Expression
1 fprodrev.5 . 2  |-  ( j  =  ( K  -  k )  ->  A  =  B )
2 fzfid 12085 . 2  |-  ( ph  ->  ( ( K  -  N ) ... ( K  -  M )
)  e.  Fin )
3 ovex 6324 . . . . 5  |-  ( K  -  j )  e. 
_V
4 eqid 2457 . . . . 5  |-  ( j  e.  ( ( K  -  N ) ... ( K  -  M
) )  |->  ( K  -  j ) )  =  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  |->  ( K  -  j ) )
53, 4fnmpti 5715 . . . 4  |-  ( j  e.  ( ( K  -  N ) ... ( K  -  M
) )  |->  ( K  -  j ) )  Fn  ( ( K  -  N ) ... ( K  -  M
) )
65a1i 11 . . 3  |-  ( ph  ->  ( j  e.  ( ( K  -  N
) ... ( K  -  M ) )  |->  ( K  -  j ) )  Fn  ( ( K  -  N ) ... ( K  -  M ) ) )
7 ovex 6324 . . . . 5  |-  ( K  -  k )  e. 
_V
8 eqid 2457 . . . . 5  |-  ( k  e.  ( M ... N )  |->  ( K  -  k ) )  =  ( k  e.  ( M ... N
)  |->  ( K  -  k ) )
97, 8fnmpti 5715 . . . 4  |-  ( k  e.  ( M ... N )  |->  ( K  -  k ) )  Fn  ( M ... N )
10 simprr 757 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
k  =  ( K  -  j ) )
11 simprl 756 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
j  e.  ( ( K  -  N ) ... ( K  -  M ) ) )
12 fprodshft.2 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  ZZ )
1312adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  ->  M  e.  ZZ )
14 fprodshft.3 . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  ZZ )
1514adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  ->  N  e.  ZZ )
16 fprodshft.1 . . . . . . . . . . . 12  |-  ( ph  ->  K  e.  ZZ )
1716adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  ->  K  e.  ZZ )
18 elfzelz 11713 . . . . . . . . . . . 12  |-  ( j  e.  ( ( K  -  N ) ... ( K  -  M
) )  ->  j  e.  ZZ )
1918ad2antrl 727 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
j  e.  ZZ )
20 fzrev 11767 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( j  e.  ( ( K  -  N
) ... ( K  -  M ) )  <->  ( K  -  j )  e.  ( M ... N
) ) )
2113, 15, 17, 19, 20syl22anc 1229 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
( j  e.  ( ( K  -  N
) ... ( K  -  M ) )  <->  ( K  -  j )  e.  ( M ... N
) ) )
2211, 21mpbid 210 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
( K  -  j
)  e.  ( M ... N ) )
2310, 22eqeltrd 2545 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
k  e.  ( M ... N ) )
24 oveq2 6304 . . . . . . . . . 10  |-  ( k  =  ( K  -  j )  ->  ( K  -  k )  =  ( K  -  ( K  -  j
) ) )
2524ad2antll 728 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
( K  -  k
)  =  ( K  -  ( K  -  j ) ) )
2616zcnd 10991 . . . . . . . . . . 11  |-  ( ph  ->  K  e.  CC )
2726adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  ->  K  e.  CC )
2818zcnd 10991 . . . . . . . . . . 11  |-  ( j  e.  ( ( K  -  N ) ... ( K  -  M
) )  ->  j  e.  CC )
2928ad2antrl 727 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
j  e.  CC )
3027, 29nncand 9955 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
( K  -  ( K  -  j )
)  =  j )
3125, 30eqtr2d 2499 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
j  =  ( K  -  k ) )
3223, 31jca 532 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
( k  e.  ( M ... N )  /\  j  =  ( K  -  k ) ) )
33 simprr 757 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
j  =  ( K  -  k ) )
34 simprl 756 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
k  e.  ( M ... N ) )
3512adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  ->  M  e.  ZZ )
3614adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  ->  N  e.  ZZ )
3716adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  ->  K  e.  ZZ )
38 elfzelz 11713 . . . . . . . . . . . 12  |-  ( k  e.  ( M ... N )  ->  k  e.  ZZ )
3938ad2antrl 727 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
k  e.  ZZ )
40 fzrev2 11768 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  k  e.  ZZ ) )  -> 
( k  e.  ( M ... N )  <-> 
( K  -  k
)  e.  ( ( K  -  N ) ... ( K  -  M ) ) ) )
4135, 36, 37, 39, 40syl22anc 1229 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
( k  e.  ( M ... N )  <-> 
( K  -  k
)  e.  ( ( K  -  N ) ... ( K  -  M ) ) ) )
4234, 41mpbid 210 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
( K  -  k
)  e.  ( ( K  -  N ) ... ( K  -  M ) ) )
4333, 42eqeltrd 2545 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
j  e.  ( ( K  -  N ) ... ( K  -  M ) ) )
44 oveq2 6304 . . . . . . . . . 10  |-  ( j  =  ( K  -  k )  ->  ( K  -  j )  =  ( K  -  ( K  -  k
) ) )
4544ad2antll 728 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
( K  -  j
)  =  ( K  -  ( K  -  k ) ) )
4626adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  ->  K  e.  CC )
4738zcnd 10991 . . . . . . . . . . 11  |-  ( k  e.  ( M ... N )  ->  k  e.  CC )
4847ad2antrl 727 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
k  e.  CC )
4946, 48nncand 9955 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
( K  -  ( K  -  k )
)  =  k )
5045, 49eqtr2d 2499 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
k  =  ( K  -  j ) )
5143, 50jca 532 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
( j  e.  ( ( K  -  N
) ... ( K  -  M ) )  /\  k  =  ( K  -  j ) ) )
5232, 51impbida 832 . . . . . 6  |-  ( ph  ->  ( ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) )  <->  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) ) )
5352mptcnv 5415 . . . . 5  |-  ( ph  ->  `' ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  |->  ( K  -  j ) )  =  ( k  e.  ( M ... N ) 
|->  ( K  -  k
) ) )
5453fneq1d 5677 . . . 4  |-  ( ph  ->  ( `' ( j  e.  ( ( K  -  N ) ... ( K  -  M
) )  |->  ( K  -  j ) )  Fn  ( M ... N )  <->  ( k  e.  ( M ... N
)  |->  ( K  -  k ) )  Fn  ( M ... N
) ) )
559, 54mpbiri 233 . . 3  |-  ( ph  ->  `' ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  |->  ( K  -  j ) )  Fn  ( M ... N
) )
56 dff1o4 5830 . . 3  |-  ( ( j  e.  ( ( K  -  N ) ... ( K  -  M ) )  |->  ( K  -  j ) ) : ( ( K  -  N ) ... ( K  -  M ) ) -1-1-onto-> ( M ... N )  <->  ( (
j  e.  ( ( K  -  N ) ... ( K  -  M ) )  |->  ( K  -  j ) )  Fn  ( ( K  -  N ) ... ( K  -  M ) )  /\  `' ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  |->  ( K  -  j ) )  Fn  ( M ... N
) ) )
576, 55, 56sylanbrc 664 . 2  |-  ( ph  ->  ( j  e.  ( ( K  -  N
) ... ( K  -  M ) )  |->  ( K  -  j ) ) : ( ( K  -  N ) ... ( K  -  M ) ) -1-1-onto-> ( M ... N ) )
58 oveq2 6304 . . . 4  |-  ( j  =  k  ->  ( K  -  j )  =  ( K  -  k ) )
5958, 4, 7fvmpt 5956 . . 3  |-  ( k  e.  ( ( K  -  N ) ... ( K  -  M
) )  ->  (
( j  e.  ( ( K  -  N
) ... ( K  -  M ) )  |->  ( K  -  j ) ) `  k )  =  ( K  -  k ) )
6059adantl 466 . 2  |-  ( (
ph  /\  k  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  (
( j  e.  ( ( K  -  N
) ... ( K  -  M ) )  |->  ( K  -  j ) ) `  k )  =  ( K  -  k ) )
61 fprodshft.4 . 2  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )
621, 2, 57, 60, 61fprodf1o 13764 1  |-  ( ph  ->  prod_ j  e.  ( M ... N ) A  =  prod_ k  e.  ( ( K  -  N ) ... ( K  -  M )
) B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819    |-> cmpt 4515   `'ccnv 5007    Fn wfn 5589   -1-1-onto->wf1o 5593   ` cfv 5594  (class class class)co 6296   CCcc 9507    - cmin 9824   ZZcz 10885   ...cfz 11697   prod_cprod 13723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-sup 7919  df-oi 7953  df-card 8337  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-n0 10817  df-z 10886  df-uz 11107  df-rp 11246  df-fz 11698  df-fzo 11821  df-seq 12110  df-exp 12169  df-hash 12408  df-cj 12943  df-re 12944  df-im 12945  df-sqrt 13079  df-abs 13080  df-clim 13322  df-prod 13724
This theorem is referenced by:  fallfacval3  29309
  Copyright terms: Public domain W3C validator