MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodn0 Structured version   Unicode version

Theorem fprodn0 13795
Description: A finite product of non-zero terms is non-zero. (Contributed by Scott Fenton, 15-Jan-2018.)
Hypotheses
Ref Expression
fprodn0.1  |-  ( ph  ->  A  e.  Fin )
fprodn0.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
fprodn0.3  |-  ( (
ph  /\  k  e.  A )  ->  B  =/=  0 )
Assertion
Ref Expression
fprodn0  |-  ( ph  ->  prod_ k  e.  A  B  =/=  0 )
Distinct variable groups:    A, k    ph, k
Allowed substitution hint:    B( k)

Proof of Theorem fprodn0
Dummy variables  f  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 13728 . . . . 5  |-  ( A  =  (/)  ->  prod_ k  e.  A  B  =  prod_ k  e.  (/)  B )
2 prod0 13762 . . . . 5  |-  prod_ k  e.  (/)  B  =  1
31, 2syl6eq 2514 . . . 4  |-  ( A  =  (/)  ->  prod_ k  e.  A  B  = 
1 )
4 ax-1ne0 9578 . . . . 5  |-  1  =/=  0
54a1i 11 . . . 4  |-  ( A  =  (/)  ->  1  =/=  0 )
63, 5eqnetrd 2750 . . 3  |-  ( A  =  (/)  ->  prod_ k  e.  A  B  =/=  0 )
76a1i 11 . 2  |-  ( ph  ->  ( A  =  (/)  ->  prod_ k  e.  A  B  =/=  0 ) )
8 prodfc 13764 . . . . . . 7  |-  prod_ m  e.  A  ( (
k  e.  A  |->  B ) `  m )  =  prod_ k  e.  A  B
9 fveq2 5872 . . . . . . . 8  |-  ( m  =  ( f `  n )  ->  (
( k  e.  A  |->  B ) `  m
)  =  ( ( k  e.  A  |->  B ) `  ( f `
 n ) ) )
10 simprl 756 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( # `
 A )  e.  NN )
11 simprr 757 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )
12 fprodn0.2 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
13 eqid 2457 . . . . . . . . . . 11  |-  ( k  e.  A  |->  B )  =  ( k  e.  A  |->  B )
1412, 13fmptd 6056 . . . . . . . . . 10  |-  ( ph  ->  ( k  e.  A  |->  B ) : A --> CC )
1514adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (
k  e.  A  |->  B ) : A --> CC )
1615ffvelrnda 6032 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  m  e.  A )  ->  ( ( k  e.  A  |->  B ) `  m )  e.  CC )
17 f1of 5822 . . . . . . . . . 10  |-  ( f : ( 1 ... ( # `  A
) ) -1-1-onto-> A  ->  f :
( 1 ... ( # `
 A ) ) --> A )
1811, 17syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  f : ( 1 ... ( # `  A
) ) --> A )
19 fvco3 5950 . . . . . . . . 9  |-  ( ( f : ( 1 ... ( # `  A
) ) --> A  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  n )  =  ( ( k  e.  A  |->  B ) `  (
f `  n )
) )
2018, 19sylan 471 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  n )  =  ( ( k  e.  A  |->  B ) `  (
f `  n )
) )
219, 10, 11, 16, 20fprod 13760 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  prod_ m  e.  A  ( ( k  e.  A  |->  B ) `  m )  =  (  seq 1
(  x.  ,  ( ( k  e.  A  |->  B )  o.  f
) ) `  ( # `
 A ) ) )
228, 21syl5eqr 2512 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  prod_ k  e.  A  B  =  (  seq 1 (  x.  ,  ( ( k  e.  A  |->  B )  o.  f ) ) `  ( # `  A ) ) )
23 nnuz 11141 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
2410, 23syl6eleq 2555 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( # `
 A )  e.  ( ZZ>= `  1 )
)
25 fco 5747 . . . . . . . . 9  |-  ( ( ( k  e.  A  |->  B ) : A --> CC  /\  f : ( 1 ... ( # `  A ) ) --> A )  ->  ( (
k  e.  A  |->  B )  o.  f ) : ( 1 ... ( # `  A
) ) --> CC )
2615, 18, 25syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (
( k  e.  A  |->  B )  o.  f
) : ( 1 ... ( # `  A
) ) --> CC )
2726ffvelrnda 6032 . . . . . . 7  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  m  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  m )  e.  CC )
28 fvco3 5950 . . . . . . . . 9  |-  ( ( f : ( 1 ... ( # `  A
) ) --> A  /\  m  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  m )  =  ( ( k  e.  A  |->  B ) `  (
f `  m )
) )
2918, 28sylan 471 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  m  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  m )  =  ( ( k  e.  A  |->  B ) `  (
f `  m )
) )
3017ffvelrnda 6032 . . . . . . . . . . 11  |-  ( ( f : ( 1 ... ( # `  A
) ) -1-1-onto-> A  /\  m  e.  ( 1 ... ( # `
 A ) ) )  ->  ( f `  m )  e.  A
)
3130adantll 713 . . . . . . . . . 10  |-  ( ( ( ( # `  A
)  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )  /\  m  e.  ( 1 ... ( # `
 A ) ) )  ->  ( f `  m )  e.  A
)
32 simpr 461 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( f `  m )  e.  A
)  ->  ( f `  m )  e.  A
)
33 nfcv 2619 . . . . . . . . . . . . . 14  |-  F/_ k
( f `  m
)
34 nfv 1708 . . . . . . . . . . . . . . 15  |-  F/ k
ph
35 nfcsb1v 3446 . . . . . . . . . . . . . . . 16  |-  F/_ k [_ ( f `  m
)  /  k ]_ B
3635nfel1 2635 . . . . . . . . . . . . . . 15  |-  F/ k
[_ ( f `  m )  /  k ]_ B  e.  CC
3734, 36nfim 1921 . . . . . . . . . . . . . 14  |-  F/ k ( ph  ->  [_ (
f `  m )  /  k ]_ B  e.  CC )
38 csbeq1a 3439 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( f `  m )  ->  B  =  [_ ( f `  m )  /  k ]_ B )
3938eleq1d 2526 . . . . . . . . . . . . . . 15  |-  ( k  =  ( f `  m )  ->  ( B  e.  CC  <->  [_ ( f `
 m )  / 
k ]_ B  e.  CC ) )
4039imbi2d 316 . . . . . . . . . . . . . 14  |-  ( k  =  ( f `  m )  ->  (
( ph  ->  B  e.  CC )  <->  ( ph  ->  [_ ( f `  m )  /  k ]_ B  e.  CC ) ) )
4112expcom 435 . . . . . . . . . . . . . 14  |-  ( k  e.  A  ->  ( ph  ->  B  e.  CC ) )
4233, 37, 40, 41vtoclgaf 3172 . . . . . . . . . . . . 13  |-  ( ( f `  m )  e.  A  ->  ( ph  ->  [_ ( f `  m )  /  k ]_ B  e.  CC ) )
4342impcom 430 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( f `  m )  e.  A
)  ->  [_ ( f `
 m )  / 
k ]_ B  e.  CC )
4413fvmpts 5958 . . . . . . . . . . . 12  |-  ( ( ( f `  m
)  e.  A  /\  [_ ( f `  m
)  /  k ]_ B  e.  CC )  ->  ( ( k  e.  A  |->  B ) `  ( f `  m
) )  =  [_ ( f `  m
)  /  k ]_ B )
4532, 43, 44syl2anc 661 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f `  m )  e.  A
)  ->  ( (
k  e.  A  |->  B ) `  ( f `
 m ) )  =  [_ ( f `
 m )  / 
k ]_ B )
46 nfcv 2619 . . . . . . . . . . . . . . 15  |-  F/_ k
0
4735, 46nfne 2788 . . . . . . . . . . . . . 14  |-  F/ k
[_ ( f `  m )  /  k ]_ B  =/=  0
4834, 47nfim 1921 . . . . . . . . . . . . 13  |-  F/ k ( ph  ->  [_ (
f `  m )  /  k ]_ B  =/=  0 )
4938neeq1d 2734 . . . . . . . . . . . . . 14  |-  ( k  =  ( f `  m )  ->  ( B  =/=  0  <->  [_ ( f `
 m )  / 
k ]_ B  =/=  0
) )
5049imbi2d 316 . . . . . . . . . . . . 13  |-  ( k  =  ( f `  m )  ->  (
( ph  ->  B  =/=  0 )  <->  ( ph  ->  [_ ( f `  m )  /  k ]_ B  =/=  0
) ) )
51 fprodn0.3 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  A )  ->  B  =/=  0 )
5251expcom 435 . . . . . . . . . . . . 13  |-  ( k  e.  A  ->  ( ph  ->  B  =/=  0
) )
5333, 48, 50, 52vtoclgaf 3172 . . . . . . . . . . . 12  |-  ( ( f `  m )  e.  A  ->  ( ph  ->  [_ ( f `  m )  /  k ]_ B  =/=  0
) )
5453impcom 430 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f `  m )  e.  A
)  ->  [_ ( f `
 m )  / 
k ]_ B  =/=  0
)
5545, 54eqnetrd 2750 . . . . . . . . . 10  |-  ( (
ph  /\  ( f `  m )  e.  A
)  ->  ( (
k  e.  A  |->  B ) `  ( f `
 m ) )  =/=  0 )
5631, 55sylan2 474 . . . . . . . . 9  |-  ( (
ph  /\  ( (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )  /\  m  e.  ( 1 ... ( # `
 A ) ) ) )  ->  (
( k  e.  A  |->  B ) `  (
f `  m )
)  =/=  0 )
5756anassrs 648 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  m  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( k  e.  A  |->  B ) `  ( f `  m
) )  =/=  0
)
5829, 57eqnetrd 2750 . . . . . . 7  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  m  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  m )  =/=  0
)
5924, 27, 58prodfn0 13715 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (  seq 1 (  x.  , 
( ( k  e.  A  |->  B )  o.  f ) ) `  ( # `  A ) )  =/=  0 )
6022, 59eqnetrd 2750 . . . . 5  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  prod_ k  e.  A  B  =/=  0 )
6160expr 615 . . . 4  |-  ( (
ph  /\  ( # `  A
)  e.  NN )  ->  ( f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A  ->  prod_ k  e.  A  B  =/=  0 ) )
6261exlimdv 1725 . . 3  |-  ( (
ph  /\  ( # `  A
)  e.  NN )  ->  ( E. f 
f : ( 1 ... ( # `  A
) ) -1-1-onto-> A  ->  prod_ k  e.  A  B  =/=  0
) )
6362expimpd 603 . 2  |-  ( ph  ->  ( ( ( # `  A )  e.  NN  /\ 
E. f  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A )  ->  prod_ k  e.  A  B  =/=  0
) )
64 fprodn0.1 . . 3  |-  ( ph  ->  A  e.  Fin )
65 fz1f1o 13544 . . 3  |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  (
( # `  A )  e.  NN  /\  E. f  f : ( 1 ... ( # `  A ) ) -1-1-onto-> A ) ) )
6664, 65syl 16 . 2  |-  ( ph  ->  ( A  =  (/)  \/  ( ( # `  A
)  e.  NN  /\  E. f  f : ( 1 ... ( # `  A ) ) -1-1-onto-> A ) ) )
677, 63, 66mpjaod 381 1  |-  ( ph  ->  prod_ k  e.  A  B  =/=  0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    = wceq 1395   E.wex 1613    e. wcel 1819    =/= wne 2652   [_csb 3430   (/)c0 3793    |-> cmpt 4515    o. ccom 5012   -->wf 5590   -1-1-onto->wf1o 5593   ` cfv 5594  (class class class)co 6296   Fincfn 7535   CCcc 9507   0cc0 9509   1c1 9510    x. cmul 9514   NNcn 10556   ZZ>=cuz 11106   ...cfz 11697    seqcseq 12110   #chash 12408   prod_cprod 13724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-sup 7919  df-oi 7953  df-card 8337  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-n0 10817  df-z 10886  df-uz 11107  df-rp 11246  df-fz 11698  df-fzo 11822  df-seq 12111  df-exp 12170  df-hash 12409  df-cj 12944  df-re 12945  df-im 12946  df-sqrt 13080  df-abs 13081  df-clim 13323  df-prod 13725
This theorem is referenced by:  fallfacval4  29383  bcc0  31449  mccllem  31808  dvnprodlem2  31947  etransclem15  32235  etransclem25  32245  etransclem31  32251  etransclem32  32252  etransclem33  32253  etransclem34  32254
  Copyright terms: Public domain W3C validator