Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fprodn0 Structured version   Unicode version

Theorem fprodn0 27657
Description: A finite product of non-zero terms is non-zero. (Contributed by Scott Fenton, 15-Jan-2018.)
Hypotheses
Ref Expression
fprodn0.1  |-  ( ph  ->  A  e.  Fin )
fprodn0.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
fprodn0.3  |-  ( (
ph  /\  k  e.  A )  ->  B  =/=  0 )
Assertion
Ref Expression
fprodn0  |-  ( ph  ->  prod_ k  e.  A  B  =/=  0 )
Distinct variable groups:    A, k    ph, k
Allowed substitution hint:    B( k)

Proof of Theorem fprodn0
Dummy variables  f  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 27589 . . . . 5  |-  ( A  =  (/)  ->  prod_ k  e.  A  B  =  prod_ k  e.  (/)  B )
2 prod0 27623 . . . . 5  |-  prod_ k  e.  (/)  B  =  1
31, 2syl6eq 2511 . . . 4  |-  ( A  =  (/)  ->  prod_ k  e.  A  B  = 
1 )
4 ax-1ne0 9466 . . . . 5  |-  1  =/=  0
54a1i 11 . . . 4  |-  ( A  =  (/)  ->  1  =/=  0 )
63, 5eqnetrd 2745 . . 3  |-  ( A  =  (/)  ->  prod_ k  e.  A  B  =/=  0 )
76a1i 11 . 2  |-  ( ph  ->  ( A  =  (/)  ->  prod_ k  e.  A  B  =/=  0 ) )
8 prodfc 27625 . . . . . . 7  |-  prod_ m  e.  A  ( (
k  e.  A  |->  B ) `  m )  =  prod_ k  e.  A  B
9 fveq2 5802 . . . . . . . 8  |-  ( m  =  ( f `  n )  ->  (
( k  e.  A  |->  B ) `  m
)  =  ( ( k  e.  A  |->  B ) `  ( f `
 n ) ) )
10 simprl 755 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( # `
 A )  e.  NN )
11 simprr 756 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )
12 fprodn0.2 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
13 eqid 2454 . . . . . . . . . . 11  |-  ( k  e.  A  |->  B )  =  ( k  e.  A  |->  B )
1412, 13fmptd 5979 . . . . . . . . . 10  |-  ( ph  ->  ( k  e.  A  |->  B ) : A --> CC )
1514adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (
k  e.  A  |->  B ) : A --> CC )
1615ffvelrnda 5955 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  m  e.  A )  ->  ( ( k  e.  A  |->  B ) `  m )  e.  CC )
17 f1of 5752 . . . . . . . . . 10  |-  ( f : ( 1 ... ( # `  A
) ) -1-1-onto-> A  ->  f :
( 1 ... ( # `
 A ) ) --> A )
1811, 17syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  f : ( 1 ... ( # `  A
) ) --> A )
19 fvco3 5880 . . . . . . . . 9  |-  ( ( f : ( 1 ... ( # `  A
) ) --> A  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  n )  =  ( ( k  e.  A  |->  B ) `  (
f `  n )
) )
2018, 19sylan 471 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  n )  =  ( ( k  e.  A  |->  B ) `  (
f `  n )
) )
219, 10, 11, 16, 20fprod 27621 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  prod_ m  e.  A  ( ( k  e.  A  |->  B ) `  m )  =  (  seq 1
(  x.  ,  ( ( k  e.  A  |->  B )  o.  f
) ) `  ( # `
 A ) ) )
228, 21syl5eqr 2509 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  prod_ k  e.  A  B  =  (  seq 1 (  x.  ,  ( ( k  e.  A  |->  B )  o.  f ) ) `  ( # `  A ) ) )
23 nnuz 11011 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
2410, 23syl6eleq 2552 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( # `
 A )  e.  ( ZZ>= `  1 )
)
25 fco 5679 . . . . . . . . 9  |-  ( ( ( k  e.  A  |->  B ) : A --> CC  /\  f : ( 1 ... ( # `  A ) ) --> A )  ->  ( (
k  e.  A  |->  B )  o.  f ) : ( 1 ... ( # `  A
) ) --> CC )
2615, 18, 25syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (
( k  e.  A  |->  B )  o.  f
) : ( 1 ... ( # `  A
) ) --> CC )
2726ffvelrnda 5955 . . . . . . 7  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  m  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  m )  e.  CC )
28 fvco3 5880 . . . . . . . . 9  |-  ( ( f : ( 1 ... ( # `  A
) ) --> A  /\  m  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  m )  =  ( ( k  e.  A  |->  B ) `  (
f `  m )
) )
2918, 28sylan 471 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  m  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  m )  =  ( ( k  e.  A  |->  B ) `  (
f `  m )
) )
3017ffvelrnda 5955 . . . . . . . . . . 11  |-  ( ( f : ( 1 ... ( # `  A
) ) -1-1-onto-> A  /\  m  e.  ( 1 ... ( # `
 A ) ) )  ->  ( f `  m )  e.  A
)
3130adantll 713 . . . . . . . . . 10  |-  ( ( ( ( # `  A
)  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )  /\  m  e.  ( 1 ... ( # `
 A ) ) )  ->  ( f `  m )  e.  A
)
32 simpr 461 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( f `  m )  e.  A
)  ->  ( f `  m )  e.  A
)
33 nfcv 2616 . . . . . . . . . . . . . 14  |-  F/_ k
( f `  m
)
34 nfv 1674 . . . . . . . . . . . . . . 15  |-  F/ k
ph
35 nfcsb1v 3414 . . . . . . . . . . . . . . . 16  |-  F/_ k [_ ( f `  m
)  /  k ]_ B
3635nfel1 2632 . . . . . . . . . . . . . . 15  |-  F/ k
[_ ( f `  m )  /  k ]_ B  e.  CC
3734, 36nfim 1858 . . . . . . . . . . . . . 14  |-  F/ k ( ph  ->  [_ (
f `  m )  /  k ]_ B  e.  CC )
38 csbeq1a 3407 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( f `  m )  ->  B  =  [_ ( f `  m )  /  k ]_ B )
3938eleq1d 2523 . . . . . . . . . . . . . . 15  |-  ( k  =  ( f `  m )  ->  ( B  e.  CC  <->  [_ ( f `
 m )  / 
k ]_ B  e.  CC ) )
4039imbi2d 316 . . . . . . . . . . . . . 14  |-  ( k  =  ( f `  m )  ->  (
( ph  ->  B  e.  CC )  <->  ( ph  ->  [_ ( f `  m )  /  k ]_ B  e.  CC ) ) )
4112expcom 435 . . . . . . . . . . . . . 14  |-  ( k  e.  A  ->  ( ph  ->  B  e.  CC ) )
4233, 37, 40, 41vtoclgaf 3141 . . . . . . . . . . . . 13  |-  ( ( f `  m )  e.  A  ->  ( ph  ->  [_ ( f `  m )  /  k ]_ B  e.  CC ) )
4342impcom 430 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( f `  m )  e.  A
)  ->  [_ ( f `
 m )  / 
k ]_ B  e.  CC )
4413fvmpts 5888 . . . . . . . . . . . 12  |-  ( ( ( f `  m
)  e.  A  /\  [_ ( f `  m
)  /  k ]_ B  e.  CC )  ->  ( ( k  e.  A  |->  B ) `  ( f `  m
) )  =  [_ ( f `  m
)  /  k ]_ B )
4532, 43, 44syl2anc 661 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f `  m )  e.  A
)  ->  ( (
k  e.  A  |->  B ) `  ( f `
 m ) )  =  [_ ( f `
 m )  / 
k ]_ B )
46 nfcv 2616 . . . . . . . . . . . . . . 15  |-  F/_ k
0
4735, 46nfne 2783 . . . . . . . . . . . . . 14  |-  F/ k
[_ ( f `  m )  /  k ]_ B  =/=  0
4834, 47nfim 1858 . . . . . . . . . . . . 13  |-  F/ k ( ph  ->  [_ (
f `  m )  /  k ]_ B  =/=  0 )
4938neeq1d 2729 . . . . . . . . . . . . . 14  |-  ( k  =  ( f `  m )  ->  ( B  =/=  0  <->  [_ ( f `
 m )  / 
k ]_ B  =/=  0
) )
5049imbi2d 316 . . . . . . . . . . . . 13  |-  ( k  =  ( f `  m )  ->  (
( ph  ->  B  =/=  0 )  <->  ( ph  ->  [_ ( f `  m )  /  k ]_ B  =/=  0
) ) )
51 fprodn0.3 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  A )  ->  B  =/=  0 )
5251expcom 435 . . . . . . . . . . . . 13  |-  ( k  e.  A  ->  ( ph  ->  B  =/=  0
) )
5333, 48, 50, 52vtoclgaf 3141 . . . . . . . . . . . 12  |-  ( ( f `  m )  e.  A  ->  ( ph  ->  [_ ( f `  m )  /  k ]_ B  =/=  0
) )
5453impcom 430 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f `  m )  e.  A
)  ->  [_ ( f `
 m )  / 
k ]_ B  =/=  0
)
5545, 54eqnetrd 2745 . . . . . . . . . 10  |-  ( (
ph  /\  ( f `  m )  e.  A
)  ->  ( (
k  e.  A  |->  B ) `  ( f `
 m ) )  =/=  0 )
5631, 55sylan2 474 . . . . . . . . 9  |-  ( (
ph  /\  ( (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )  /\  m  e.  ( 1 ... ( # `
 A ) ) ) )  ->  (
( k  e.  A  |->  B ) `  (
f `  m )
)  =/=  0 )
5756anassrs 648 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  m  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( k  e.  A  |->  B ) `  ( f `  m
) )  =/=  0
)
5829, 57eqnetrd 2745 . . . . . . 7  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  m  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  m )  =/=  0
)
5924, 27, 58prodfn0 27576 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (  seq 1 (  x.  , 
( ( k  e.  A  |->  B )  o.  f ) ) `  ( # `  A ) )  =/=  0 )
6022, 59eqnetrd 2745 . . . . 5  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  prod_ k  e.  A  B  =/=  0 )
6160expr 615 . . . 4  |-  ( (
ph  /\  ( # `  A
)  e.  NN )  ->  ( f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A  ->  prod_ k  e.  A  B  =/=  0 ) )
6261exlimdv 1691 . . 3  |-  ( (
ph  /\  ( # `  A
)  e.  NN )  ->  ( E. f 
f : ( 1 ... ( # `  A
) ) -1-1-onto-> A  ->  prod_ k  e.  A  B  =/=  0
) )
6362expimpd 603 . 2  |-  ( ph  ->  ( ( ( # `  A )  e.  NN  /\ 
E. f  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A )  ->  prod_ k  e.  A  B  =/=  0
) )
64 fprodn0.1 . . 3  |-  ( ph  ->  A  e.  Fin )
65 fz1f1o 13309 . . 3  |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  (
( # `  A )  e.  NN  /\  E. f  f : ( 1 ... ( # `  A ) ) -1-1-onto-> A ) ) )
6664, 65syl 16 . 2  |-  ( ph  ->  ( A  =  (/)  \/  ( ( # `  A
)  e.  NN  /\  E. f  f : ( 1 ... ( # `  A ) ) -1-1-onto-> A ) ) )
677, 63, 66mpjaod 381 1  |-  ( ph  ->  prod_ k  e.  A  B  =/=  0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    = wceq 1370   E.wex 1587    e. wcel 1758    =/= wne 2648   [_csb 3398   (/)c0 3748    |-> cmpt 4461    o. ccom 4955   -->wf 5525   -1-1-onto->wf1o 5528   ` cfv 5529  (class class class)co 6203   Fincfn 7423   CCcc 9395   0cc0 9397   1c1 9398    x. cmul 9402   NNcn 10437   ZZ>=cuz 10976   ...cfz 11558    seqcseq 11927   #chash 12224   prod_cprod 27585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-inf2 7962  ax-cnex 9453  ax-resscn 9454  ax-1cn 9455  ax-icn 9456  ax-addcl 9457  ax-addrcl 9458  ax-mulcl 9459  ax-mulrcl 9460  ax-mulcom 9461  ax-addass 9462  ax-mulass 9463  ax-distr 9464  ax-i2m1 9465  ax-1ne0 9466  ax-1rid 9467  ax-rnegex 9468  ax-rrecex 9469  ax-cnre 9470  ax-pre-lttri 9471  ax-pre-lttrn 9472  ax-pre-ltadd 9473  ax-pre-mulgt0 9474  ax-pre-sup 9475
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-int 4240  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-se 4791  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-isom 5538  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-om 6590  df-1st 6690  df-2nd 6691  df-recs 6945  df-rdg 6979  df-1o 7033  df-oadd 7037  df-er 7214  df-en 7424  df-dom 7425  df-sdom 7426  df-fin 7427  df-sup 7806  df-oi 7839  df-card 8224  df-pnf 9535  df-mnf 9536  df-xr 9537  df-ltxr 9538  df-le 9539  df-sub 9712  df-neg 9713  df-div 10109  df-nn 10438  df-2 10495  df-3 10496  df-n0 10695  df-z 10762  df-uz 10977  df-rp 11107  df-fz 11559  df-fzo 11670  df-seq 11928  df-exp 11987  df-hash 12225  df-cj 12710  df-re 12711  df-im 12712  df-sqr 12846  df-abs 12847  df-clim 13088  df-prod 27586
This theorem is referenced by:  fallfacval4  27713
  Copyright terms: Public domain W3C validator