Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fprodf1o Structured version   Unicode version

Theorem fprodf1o 27410
Description: Re-index a finite product using a bijection. (Contributed by Scott Fenton, 7-Dec-2017.)
Hypotheses
Ref Expression
fprodf1o.1  |-  ( k  =  G  ->  B  =  D )
fprodf1o.2  |-  ( ph  ->  C  e.  Fin )
fprodf1o.3  |-  ( ph  ->  F : C -1-1-onto-> A )
fprodf1o.4  |-  ( (
ph  /\  n  e.  C )  ->  ( F `  n )  =  G )
fprodf1o.5  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
Assertion
Ref Expression
fprodf1o  |-  ( ph  ->  prod_ k  e.  A  B  =  prod_ n  e.  C  D )
Distinct variable groups:    A, k, n    B, n    C, n    D, k    n, F    k, G    k, n, ph
Allowed substitution hints:    B( k)    C( k)    D( n)    F( k)    G( n)

Proof of Theorem fprodf1o
Dummy variables  f  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prod0 27407 . . . 4  |-  prod_ k  e.  (/)  B  =  1
2 fprodf1o.3 . . . . . . . . 9  |-  ( ph  ->  F : C -1-1-onto-> A )
32adantr 465 . . . . . . . 8  |-  ( (
ph  /\  C  =  (/) )  ->  F : C
-1-1-onto-> A )
4 f1oeq2 5628 . . . . . . . . 9  |-  ( C  =  (/)  ->  ( F : C -1-1-onto-> A  <->  F : (/) -1-1-onto-> A ) )
54adantl 466 . . . . . . . 8  |-  ( (
ph  /\  C  =  (/) )  ->  ( F : C -1-1-onto-> A  <->  F : (/) -1-1-onto-> A ) )
63, 5mpbid 210 . . . . . . 7  |-  ( (
ph  /\  C  =  (/) )  ->  F : (/) -1-1-onto-> A )
7 f1ofo 5643 . . . . . . 7  |-  ( F : (/)
-1-1-onto-> A  ->  F : (/) -onto-> A )
86, 7syl 16 . . . . . 6  |-  ( (
ph  /\  C  =  (/) )  ->  F : (/)
-onto-> A )
9 fo00 5669 . . . . . . 7  |-  ( F : (/) -onto-> A  <->  ( F  =  (/)  /\  A  =  (/) ) )
109simprbi 464 . . . . . 6  |-  ( F : (/) -onto-> A  ->  A  =  (/) )
118, 10syl 16 . . . . 5  |-  ( (
ph  /\  C  =  (/) )  ->  A  =  (/) )
1211prodeq1d 27385 . . . 4  |-  ( (
ph  /\  C  =  (/) )  ->  prod_ k  e.  A  B  =  prod_ k  e.  (/)  B )
13 prodeq1 27373 . . . . . 6  |-  ( C  =  (/)  ->  prod_ n  e.  C  D  =  prod_ n  e.  (/)  D )
14 prod0 27407 . . . . . 6  |-  prod_ n  e.  (/)  D  =  1
1513, 14syl6eq 2486 . . . . 5  |-  ( C  =  (/)  ->  prod_ n  e.  C  D  = 
1 )
1615adantl 466 . . . 4  |-  ( (
ph  /\  C  =  (/) )  ->  prod_ n  e.  C  D  =  1 )
171, 12, 163eqtr4a 2496 . . 3  |-  ( (
ph  /\  C  =  (/) )  ->  prod_ k  e.  A  B  =  prod_ n  e.  C  D )
1817ex 434 . 2  |-  ( ph  ->  ( C  =  (/)  ->  prod_ k  e.  A  B  =  prod_ n  e.  C  D ) )
19 fveq2 5686 . . . . . . . . 9  |-  ( m  =  ( f `  n )  ->  ( F `  m )  =  ( F `  ( f `  n
) ) )
2019fveq2d 5690 . . . . . . . 8  |-  ( m  =  ( f `  n )  ->  (
( k  e.  A  |->  B ) `  ( F `  m )
)  =  ( ( k  e.  A  |->  B ) `  ( F `
 ( f `  n ) ) ) )
21 simprl 755 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 C )  e.  NN  /\  f : ( 1 ... ( # `
 C ) ) -1-1-onto-> C ) )  ->  ( # `
 C )  e.  NN )
22 simprr 756 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 C )  e.  NN  /\  f : ( 1 ... ( # `
 C ) ) -1-1-onto-> C ) )  ->  f : ( 1 ... ( # `  C
) ) -1-1-onto-> C )
23 f1of 5636 . . . . . . . . . . . 12  |-  ( F : C -1-1-onto-> A  ->  F : C
--> A )
242, 23syl 16 . . . . . . . . . . 11  |-  ( ph  ->  F : C --> A )
2524ffvelrnda 5838 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  C )  ->  ( F `  m )  e.  A )
26 fprodf1o.5 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
27 eqid 2438 . . . . . . . . . . . 12  |-  ( k  e.  A  |->  B )  =  ( k  e.  A  |->  B )
2826, 27fmptd 5862 . . . . . . . . . . 11  |-  ( ph  ->  ( k  e.  A  |->  B ) : A --> CC )
2928ffvelrnda 5838 . . . . . . . . . 10  |-  ( (
ph  /\  ( F `  m )  e.  A
)  ->  ( (
k  e.  A  |->  B ) `  ( F `
 m ) )  e.  CC )
3025, 29syldan 470 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  C )  ->  (
( k  e.  A  |->  B ) `  ( F `  m )
)  e.  CC )
3130adantlr 714 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  C )  e.  NN  /\  f : ( 1 ... ( # `  C
) ) -1-1-onto-> C ) )  /\  m  e.  C )  ->  ( ( k  e.  A  |->  B ) `  ( F `  m ) )  e.  CC )
32 simpr 461 . . . . . . . . . . . 12  |-  ( ( ( # `  C
)  e.  NN  /\  f : ( 1 ... ( # `  C
) ) -1-1-onto-> C )  ->  f : ( 1 ... ( # `  C
) ) -1-1-onto-> C )
33 f1oco 5658 . . . . . . . . . . . 12  |-  ( ( F : C -1-1-onto-> A  /\  f : ( 1 ... ( # `  C
) ) -1-1-onto-> C )  ->  ( F  o.  f ) : ( 1 ... ( # `  C
) ) -1-1-onto-> A )
342, 32, 33syl2an 477 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 C )  e.  NN  /\  f : ( 1 ... ( # `
 C ) ) -1-1-onto-> C ) )  ->  ( F  o.  f ) : ( 1 ... ( # `  C
) ) -1-1-onto-> A )
35 f1of 5636 . . . . . . . . . . 11  |-  ( ( F  o.  f ) : ( 1 ... ( # `  C
) ) -1-1-onto-> A  ->  ( F  o.  f ) : ( 1 ... ( # `  C ) ) --> A )
3634, 35syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 C )  e.  NN  /\  f : ( 1 ... ( # `
 C ) ) -1-1-onto-> C ) )  ->  ( F  o.  f ) : ( 1 ... ( # `  C
) ) --> A )
37 fvco3 5763 . . . . . . . . . 10  |-  ( ( ( F  o.  f
) : ( 1 ... ( # `  C
) ) --> A  /\  n  e.  ( 1 ... ( # `  C
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  ( F  o.  f ) ) `  n )  =  ( ( k  e.  A  |->  B ) `  (
( F  o.  f
) `  n )
) )
3836, 37sylan 471 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  C )  e.  NN  /\  f : ( 1 ... ( # `  C
) ) -1-1-onto-> C ) )  /\  n  e.  ( 1 ... ( # `  C
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  ( F  o.  f ) ) `  n )  =  ( ( k  e.  A  |->  B ) `  (
( F  o.  f
) `  n )
) )
39 f1of 5636 . . . . . . . . . . . . 13  |-  ( f : ( 1 ... ( # `  C
) ) -1-1-onto-> C  ->  f :
( 1 ... ( # `
 C ) ) --> C )
4039adantl 466 . . . . . . . . . . . 12  |-  ( ( ( # `  C
)  e.  NN  /\  f : ( 1 ... ( # `  C
) ) -1-1-onto-> C )  ->  f : ( 1 ... ( # `  C
) ) --> C )
4140adantl 466 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 C )  e.  NN  /\  f : ( 1 ... ( # `
 C ) ) -1-1-onto-> C ) )  ->  f : ( 1 ... ( # `  C
) ) --> C )
42 fvco3 5763 . . . . . . . . . . 11  |-  ( ( f : ( 1 ... ( # `  C
) ) --> C  /\  n  e.  ( 1 ... ( # `  C
) ) )  -> 
( ( F  o.  f ) `  n
)  =  ( F `
 ( f `  n ) ) )
4341, 42sylan 471 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  C )  e.  NN  /\  f : ( 1 ... ( # `  C
) ) -1-1-onto-> C ) )  /\  n  e.  ( 1 ... ( # `  C
) ) )  -> 
( ( F  o.  f ) `  n
)  =  ( F `
 ( f `  n ) ) )
4443fveq2d 5690 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  C )  e.  NN  /\  f : ( 1 ... ( # `  C
) ) -1-1-onto-> C ) )  /\  n  e.  ( 1 ... ( # `  C
) ) )  -> 
( ( k  e.  A  |->  B ) `  ( ( F  o.  f ) `  n
) )  =  ( ( k  e.  A  |->  B ) `  ( F `  ( f `  n ) ) ) )
4538, 44eqtrd 2470 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  C )  e.  NN  /\  f : ( 1 ... ( # `  C
) ) -1-1-onto-> C ) )  /\  n  e.  ( 1 ... ( # `  C
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  ( F  o.  f ) ) `  n )  =  ( ( k  e.  A  |->  B ) `  ( F `  ( f `  n ) ) ) )
4620, 21, 22, 31, 45fprod 27405 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 C )  e.  NN  /\  f : ( 1 ... ( # `
 C ) ) -1-1-onto-> C ) )  ->  prod_ m  e.  C  ( ( k  e.  A  |->  B ) `  ( F `
 m ) )  =  (  seq 1
(  x.  ,  ( ( k  e.  A  |->  B )  o.  ( F  o.  f )
) ) `  ( # `
 C ) ) )
47 fprodf1o.4 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  C )  ->  ( F `  n )  =  G )
4824ffvelrnda 5838 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  C )  ->  ( F `  n )  e.  A )
4947, 48eqeltrrd 2513 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  C )  ->  G  e.  A )
50 fprodf1o.1 . . . . . . . . . . . . . 14  |-  ( k  =  G  ->  B  =  D )
5150, 27fvmpti 5768 . . . . . . . . . . . . 13  |-  ( G  e.  A  ->  (
( k  e.  A  |->  B ) `  G
)  =  (  _I 
`  D ) )
5249, 51syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  C )  ->  (
( k  e.  A  |->  B ) `  G
)  =  (  _I 
`  D ) )
5347fveq2d 5690 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  C )  ->  (
( k  e.  A  |->  B ) `  ( F `  n )
)  =  ( ( k  e.  A  |->  B ) `  G ) )
54 eqid 2438 . . . . . . . . . . . . . 14  |-  ( n  e.  C  |->  D )  =  ( n  e.  C  |->  D )
5554fvmpt2i 5775 . . . . . . . . . . . . 13  |-  ( n  e.  C  ->  (
( n  e.  C  |->  D ) `  n
)  =  (  _I 
`  D ) )
5655adantl 466 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  C )  ->  (
( n  e.  C  |->  D ) `  n
)  =  (  _I 
`  D ) )
5752, 53, 563eqtr4rd 2481 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  C )  ->  (
( n  e.  C  |->  D ) `  n
)  =  ( ( k  e.  A  |->  B ) `  ( F `
 n ) ) )
5857ralrimiva 2794 . . . . . . . . . 10  |-  ( ph  ->  A. n  e.  C  ( ( n  e.  C  |->  D ) `  n )  =  ( ( k  e.  A  |->  B ) `  ( F `  n )
) )
59 nffvmpt1 5694 . . . . . . . . . . . 12  |-  F/_ n
( ( n  e.  C  |->  D ) `  m )
6059nfeq1 2583 . . . . . . . . . . 11  |-  F/ n
( ( n  e.  C  |->  D ) `  m )  =  ( ( k  e.  A  |->  B ) `  ( F `  m )
)
61 fveq2 5686 . . . . . . . . . . . 12  |-  ( n  =  m  ->  (
( n  e.  C  |->  D ) `  n
)  =  ( ( n  e.  C  |->  D ) `  m ) )
62 fveq2 5686 . . . . . . . . . . . . 13  |-  ( n  =  m  ->  ( F `  n )  =  ( F `  m ) )
6362fveq2d 5690 . . . . . . . . . . . 12  |-  ( n  =  m  ->  (
( k  e.  A  |->  B ) `  ( F `  n )
)  =  ( ( k  e.  A  |->  B ) `  ( F `
 m ) ) )
6461, 63eqeq12d 2452 . . . . . . . . . . 11  |-  ( n  =  m  ->  (
( ( n  e.  C  |->  D ) `  n )  =  ( ( k  e.  A  |->  B ) `  ( F `  n )
)  <->  ( ( n  e.  C  |->  D ) `
 m )  =  ( ( k  e.  A  |->  B ) `  ( F `  m ) ) ) )
6560, 64rspc 3062 . . . . . . . . . 10  |-  ( m  e.  C  ->  ( A. n  e.  C  ( ( n  e.  C  |->  D ) `  n )  =  ( ( k  e.  A  |->  B ) `  ( F `  n )
)  ->  ( (
n  e.  C  |->  D ) `  m )  =  ( ( k  e.  A  |->  B ) `
 ( F `  m ) ) ) )
6658, 65mpan9 469 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  C )  ->  (
( n  e.  C  |->  D ) `  m
)  =  ( ( k  e.  A  |->  B ) `  ( F `
 m ) ) )
6766adantlr 714 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  C )  e.  NN  /\  f : ( 1 ... ( # `  C
) ) -1-1-onto-> C ) )  /\  m  e.  C )  ->  ( ( n  e.  C  |->  D ) `  m )  =  ( ( k  e.  A  |->  B ) `  ( F `  m )
) )
6867prodeq2dv 27387 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 C )  e.  NN  /\  f : ( 1 ... ( # `
 C ) ) -1-1-onto-> C ) )  ->  prod_ m  e.  C  ( ( n  e.  C  |->  D ) `  m )  =  prod_ m  e.  C  ( ( k  e.  A  |->  B ) `  ( F `  m ) ) )
69 fveq2 5686 . . . . . . . 8  |-  ( m  =  ( ( F  o.  f ) `  n )  ->  (
( k  e.  A  |->  B ) `  m
)  =  ( ( k  e.  A  |->  B ) `  ( ( F  o.  f ) `
 n ) ) )
7028adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 C )  e.  NN  /\  f : ( 1 ... ( # `
 C ) ) -1-1-onto-> C ) )  ->  (
k  e.  A  |->  B ) : A --> CC )
7170ffvelrnda 5838 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  C )  e.  NN  /\  f : ( 1 ... ( # `  C
) ) -1-1-onto-> C ) )  /\  m  e.  A )  ->  ( ( k  e.  A  |->  B ) `  m )  e.  CC )
7269, 21, 34, 71, 38fprod 27405 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 C )  e.  NN  /\  f : ( 1 ... ( # `
 C ) ) -1-1-onto-> C ) )  ->  prod_ m  e.  A  ( ( k  e.  A  |->  B ) `  m )  =  (  seq 1
(  x.  ,  ( ( k  e.  A  |->  B )  o.  ( F  o.  f )
) ) `  ( # `
 C ) ) )
7346, 68, 723eqtr4rd 2481 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 C )  e.  NN  /\  f : ( 1 ... ( # `
 C ) ) -1-1-onto-> C ) )  ->  prod_ m  e.  A  ( ( k  e.  A  |->  B ) `  m )  =  prod_ m  e.  C  ( ( n  e.  C  |->  D ) `  m ) )
74 prodfc 27409 . . . . . 6  |-  prod_ m  e.  A  ( (
k  e.  A  |->  B ) `  m )  =  prod_ k  e.  A  B
75 prodfc 27409 . . . . . 6  |-  prod_ m  e.  C  ( (
n  e.  C  |->  D ) `  m )  =  prod_ n  e.  C  D
7673, 74, 753eqtr3g 2493 . . . . 5  |-  ( (
ph  /\  ( ( # `
 C )  e.  NN  /\  f : ( 1 ... ( # `
 C ) ) -1-1-onto-> C ) )  ->  prod_ k  e.  A  B  = 
prod_ n  e.  C  D )
7776expr 615 . . . 4  |-  ( (
ph  /\  ( # `  C
)  e.  NN )  ->  ( f : ( 1 ... ( # `
 C ) ) -1-1-onto-> C  ->  prod_ k  e.  A  B  =  prod_ n  e.  C  D ) )
7877exlimdv 1690 . . 3  |-  ( (
ph  /\  ( # `  C
)  e.  NN )  ->  ( E. f 
f : ( 1 ... ( # `  C
) ) -1-1-onto-> C  ->  prod_ k  e.  A  B  =  prod_ n  e.  C  D ) )
7978expimpd 603 . 2  |-  ( ph  ->  ( ( ( # `  C )  e.  NN  /\ 
E. f  f : ( 1 ... ( # `
 C ) ) -1-1-onto-> C )  ->  prod_ k  e.  A  B  =  prod_ n  e.  C  D ) )
80 fprodf1o.2 . . 3  |-  ( ph  ->  C  e.  Fin )
81 fz1f1o 13179 . . 3  |-  ( C  e.  Fin  ->  ( C  =  (/)  \/  (
( # `  C )  e.  NN  /\  E. f  f : ( 1 ... ( # `  C ) ) -1-1-onto-> C ) ) )
8280, 81syl 16 . 2  |-  ( ph  ->  ( C  =  (/)  \/  ( ( # `  C
)  e.  NN  /\  E. f  f : ( 1 ... ( # `  C ) ) -1-1-onto-> C ) ) )
8318, 79, 82mpjaod 381 1  |-  ( ph  ->  prod_ k  e.  A  B  =  prod_ n  e.  C  D )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1369   E.wex 1586    e. wcel 1756   A.wral 2710   (/)c0 3632    e. cmpt 4345    _I cid 4626    o. ccom 4839   -->wf 5409   -onto->wfo 5411   -1-1-onto->wf1o 5412   ` cfv 5413  (class class class)co 6086   Fincfn 7302   CCcc 9272   1c1 9275    x. cmul 9279   NNcn 10314   ...cfz 11429    seqcseq 11798   #chash 12095   prod_cprod 27369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-1o 6912  df-oadd 6916  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-sup 7683  df-oi 7716  df-card 8101  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-n0 10572  df-z 10639  df-uz 10854  df-rp 10984  df-fz 11430  df-fzo 11541  df-seq 11799  df-exp 11858  df-hash 12096  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-clim 12958  df-prod 27370
This theorem is referenced by:  fprodss  27412  fprodshft  27438  fprodrev  27439  fprod2dlem  27442  fprodcnv  27445
  Copyright terms: Public domain W3C validator