Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fproddiv Structured version   Unicode version

Theorem fproddiv 28696
Description: The quotient of two finite products. (Contributed by Scott Fenton, 15-Jan-2018.)
Hypotheses
Ref Expression
fprodmul.1  |-  ( ph  ->  A  e.  Fin )
fprodmul.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
fprodmul.3  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
fproddiv.4  |-  ( (
ph  /\  k  e.  A )  ->  C  =/=  0 )
Assertion
Ref Expression
fproddiv  |-  ( ph  ->  prod_ k  e.  A  ( B  /  C
)  =  ( prod_
k  e.  A  B  /  prod_ k  e.  A  C ) )
Distinct variable groups:    A, k    ph, k
Allowed substitution hints:    B( k)    C( k)

Proof of Theorem fproddiv
Dummy variables  f  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1div1e1 10237 . . . . 5  |-  ( 1  /  1 )  =  1
21eqcomi 2480 . . . 4  |-  1  =  ( 1  / 
1 )
3 prodeq1 28646 . . . . 5  |-  ( A  =  (/)  ->  prod_ k  e.  A  ( B  /  C )  =  prod_ k  e.  (/)  ( B  /  C ) )
4 prod0 28680 . . . . 5  |-  prod_ k  e.  (/)  ( B  /  C )  =  1
53, 4syl6eq 2524 . . . 4  |-  ( A  =  (/)  ->  prod_ k  e.  A  ( B  /  C )  =  1 )
6 prodeq1 28646 . . . . . 6  |-  ( A  =  (/)  ->  prod_ k  e.  A  B  =  prod_ k  e.  (/)  B )
7 prod0 28680 . . . . . 6  |-  prod_ k  e.  (/)  B  =  1
86, 7syl6eq 2524 . . . . 5  |-  ( A  =  (/)  ->  prod_ k  e.  A  B  = 
1 )
9 prodeq1 28646 . . . . . 6  |-  ( A  =  (/)  ->  prod_ k  e.  A  C  =  prod_ k  e.  (/)  C )
10 prod0 28680 . . . . . 6  |-  prod_ k  e.  (/)  C  =  1
119, 10syl6eq 2524 . . . . 5  |-  ( A  =  (/)  ->  prod_ k  e.  A  C  = 
1 )
128, 11oveq12d 6302 . . . 4  |-  ( A  =  (/)  ->  ( prod_
k  e.  A  B  /  prod_ k  e.  A  C )  =  ( 1  /  1 ) )
132, 5, 123eqtr4a 2534 . . 3  |-  ( A  =  (/)  ->  prod_ k  e.  A  ( B  /  C )  =  (
prod_ k  e.  A  B  /  prod_ k  e.  A  C ) )
1413a1i 11 . 2  |-  ( ph  ->  ( A  =  (/)  ->  prod_ k  e.  A  ( B  /  C
)  =  ( prod_
k  e.  A  B  /  prod_ k  e.  A  C ) ) )
15 simprl 755 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( # `
 A )  e.  NN )
16 nnuz 11117 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
1715, 16syl6eleq 2565 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( # `
 A )  e.  ( ZZ>= `  1 )
)
18 fprodmul.2 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
19 eqid 2467 . . . . . . . . . . 11  |-  ( k  e.  A  |->  B )  =  ( k  e.  A  |->  B )
2018, 19fmptd 6045 . . . . . . . . . 10  |-  ( ph  ->  ( k  e.  A  |->  B ) : A --> CC )
21 f1of 5816 . . . . . . . . . . 11  |-  ( f : ( 1 ... ( # `  A
) ) -1-1-onto-> A  ->  f :
( 1 ... ( # `
 A ) ) --> A )
2221adantl 466 . . . . . . . . . 10  |-  ( ( ( # `  A
)  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )  ->  f : ( 1 ... ( # `  A
) ) --> A )
23 fco 5741 . . . . . . . . . 10  |-  ( ( ( k  e.  A  |->  B ) : A --> CC  /\  f : ( 1 ... ( # `  A ) ) --> A )  ->  ( (
k  e.  A  |->  B )  o.  f ) : ( 1 ... ( # `  A
) ) --> CC )
2420, 22, 23syl2an 477 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (
( k  e.  A  |->  B )  o.  f
) : ( 1 ... ( # `  A
) ) --> CC )
2524ffvelrnda 6021 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  n )  e.  CC )
26 fprodmul.3 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
27 eqid 2467 . . . . . . . . . . 11  |-  ( k  e.  A  |->  C )  =  ( k  e.  A  |->  C )
2826, 27fmptd 6045 . . . . . . . . . 10  |-  ( ph  ->  ( k  e.  A  |->  C ) : A --> CC )
29 fco 5741 . . . . . . . . . 10  |-  ( ( ( k  e.  A  |->  C ) : A --> CC  /\  f : ( 1 ... ( # `  A ) ) --> A )  ->  ( (
k  e.  A  |->  C )  o.  f ) : ( 1 ... ( # `  A
) ) --> CC )
3028, 22, 29syl2an 477 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (
( k  e.  A  |->  C )  o.  f
) : ( 1 ... ( # `  A
) ) --> CC )
3130ffvelrnda 6021 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  C )  o.  f ) `  n )  e.  CC )
32 simprr 756 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )
3332, 21syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  f : ( 1 ... ( # `  A
) ) --> A )
34 fvco3 5944 . . . . . . . . . 10  |-  ( ( f : ( 1 ... ( # `  A
) ) --> A  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  C )  o.  f ) `  n )  =  ( ( k  e.  A  |->  C ) `  (
f `  n )
) )
3533, 34sylan 471 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  C )  o.  f ) `  n )  =  ( ( k  e.  A  |->  C ) `  (
f `  n )
) )
3633ffvelrnda 6021 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( f `  n
)  e.  A )
37 simpr 461 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  A )  ->  k  e.  A )
3827fvmpt2 5957 . . . . . . . . . . . . . 14  |-  ( ( k  e.  A  /\  C  e.  CC )  ->  ( ( k  e.  A  |->  C ) `  k )  =  C )
3937, 26, 38syl2anc 661 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  A )  ->  (
( k  e.  A  |->  C ) `  k
)  =  C )
40 fproddiv.4 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  A )  ->  C  =/=  0 )
4139, 40eqnetrd 2760 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  (
( k  e.  A  |->  C ) `  k
)  =/=  0 )
4241ralrimiva 2878 . . . . . . . . . . 11  |-  ( ph  ->  A. k  e.  A  ( ( k  e.  A  |->  C ) `  k )  =/=  0
)
4342ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  ->  A. k  e.  A  ( ( k  e.  A  |->  C ) `  k )  =/=  0
)
44 nffvmpt1 5874 . . . . . . . . . . . 12  |-  F/_ k
( ( k  e.  A  |->  C ) `  ( f `  n
) )
45 nfcv 2629 . . . . . . . . . . . 12  |-  F/_ k
0
4644, 45nfne 2798 . . . . . . . . . . 11  |-  F/ k ( ( k  e.  A  |->  C ) `  ( f `  n
) )  =/=  0
47 fveq2 5866 . . . . . . . . . . . 12  |-  ( k  =  ( f `  n )  ->  (
( k  e.  A  |->  C ) `  k
)  =  ( ( k  e.  A  |->  C ) `  ( f `
 n ) ) )
4847neeq1d 2744 . . . . . . . . . . 11  |-  ( k  =  ( f `  n )  ->  (
( ( k  e.  A  |->  C ) `  k )  =/=  0  <->  ( ( k  e.  A  |->  C ) `  (
f `  n )
)  =/=  0 ) )
4946, 48rspc 3208 . . . . . . . . . 10  |-  ( ( f `  n )  e.  A  ->  ( A. k  e.  A  ( ( k  e.  A  |->  C ) `  k )  =/=  0  ->  ( ( k  e.  A  |->  C ) `  ( f `  n
) )  =/=  0
) )
5036, 43, 49sylc 60 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( k  e.  A  |->  C ) `  ( f `  n
) )  =/=  0
)
5135, 50eqnetrd 2760 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  C )  o.  f ) `  n )  =/=  0
)
5218, 26, 40divcld 10320 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  A )  ->  ( B  /  C )  e.  CC )
53 eqid 2467 . . . . . . . . . . . . . . 15  |-  ( k  e.  A  |->  ( B  /  C ) )  =  ( k  e.  A  |->  ( B  /  C ) )
5453fvmpt2 5957 . . . . . . . . . . . . . 14  |-  ( ( k  e.  A  /\  ( B  /  C
)  e.  CC )  ->  ( ( k  e.  A  |->  ( B  /  C ) ) `
 k )  =  ( B  /  C
) )
5537, 52, 54syl2anc 661 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  A )  ->  (
( k  e.  A  |->  ( B  /  C
) ) `  k
)  =  ( B  /  C ) )
5619fvmpt2 5957 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  A  /\  B  e.  CC )  ->  ( ( k  e.  A  |->  B ) `  k )  =  B )
5737, 18, 56syl2anc 661 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  A )  ->  (
( k  e.  A  |->  B ) `  k
)  =  B )
5857, 39oveq12d 6302 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  A )  ->  (
( ( k  e.  A  |->  B ) `  k )  /  (
( k  e.  A  |->  C ) `  k
) )  =  ( B  /  C ) )
5955, 58eqtr4d 2511 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  (
( k  e.  A  |->  ( B  /  C
) ) `  k
)  =  ( ( ( k  e.  A  |->  B ) `  k
)  /  ( ( k  e.  A  |->  C ) `  k ) ) )
6059ralrimiva 2878 . . . . . . . . . . 11  |-  ( ph  ->  A. k  e.  A  ( ( k  e.  A  |->  ( B  /  C ) ) `  k )  =  ( ( ( k  e.  A  |->  B ) `  k )  /  (
( k  e.  A  |->  C ) `  k
) ) )
6160ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  ->  A. k  e.  A  ( ( k  e.  A  |->  ( B  /  C ) ) `  k )  =  ( ( ( k  e.  A  |->  B ) `  k )  /  (
( k  e.  A  |->  C ) `  k
) ) )
62 nffvmpt1 5874 . . . . . . . . . . . 12  |-  F/_ k
( ( k  e.  A  |->  ( B  /  C ) ) `  ( f `  n
) )
63 nffvmpt1 5874 . . . . . . . . . . . . 13  |-  F/_ k
( ( k  e.  A  |->  B ) `  ( f `  n
) )
64 nfcv 2629 . . . . . . . . . . . . 13  |-  F/_ k  /
6563, 64, 44nfov 6307 . . . . . . . . . . . 12  |-  F/_ k
( ( ( k  e.  A  |->  B ) `
 ( f `  n ) )  / 
( ( k  e.  A  |->  C ) `  ( f `  n
) ) )
6662, 65nfeq 2640 . . . . . . . . . . 11  |-  F/ k ( ( k  e.  A  |->  ( B  /  C ) ) `  ( f `  n
) )  =  ( ( ( k  e.  A  |->  B ) `  ( f `  n
) )  /  (
( k  e.  A  |->  C ) `  (
f `  n )
) )
67 fveq2 5866 . . . . . . . . . . . 12  |-  ( k  =  ( f `  n )  ->  (
( k  e.  A  |->  ( B  /  C
) ) `  k
)  =  ( ( k  e.  A  |->  ( B  /  C ) ) `  ( f `
 n ) ) )
68 fveq2 5866 . . . . . . . . . . . . 13  |-  ( k  =  ( f `  n )  ->  (
( k  e.  A  |->  B ) `  k
)  =  ( ( k  e.  A  |->  B ) `  ( f `
 n ) ) )
6968, 47oveq12d 6302 . . . . . . . . . . . 12  |-  ( k  =  ( f `  n )  ->  (
( ( k  e.  A  |->  B ) `  k )  /  (
( k  e.  A  |->  C ) `  k
) )  =  ( ( ( k  e.  A  |->  B ) `  ( f `  n
) )  /  (
( k  e.  A  |->  C ) `  (
f `  n )
) ) )
7067, 69eqeq12d 2489 . . . . . . . . . . 11  |-  ( k  =  ( f `  n )  ->  (
( ( k  e.  A  |->  ( B  /  C ) ) `  k )  =  ( ( ( k  e.  A  |->  B ) `  k )  /  (
( k  e.  A  |->  C ) `  k
) )  <->  ( (
k  e.  A  |->  ( B  /  C ) ) `  ( f `
 n ) )  =  ( ( ( k  e.  A  |->  B ) `  ( f `
 n ) )  /  ( ( k  e.  A  |->  C ) `
 ( f `  n ) ) ) ) )
7166, 70rspc 3208 . . . . . . . . . 10  |-  ( ( f `  n )  e.  A  ->  ( A. k  e.  A  ( ( k  e.  A  |->  ( B  /  C ) ) `  k )  =  ( ( ( k  e.  A  |->  B ) `  k )  /  (
( k  e.  A  |->  C ) `  k
) )  ->  (
( k  e.  A  |->  ( B  /  C
) ) `  (
f `  n )
)  =  ( ( ( k  e.  A  |->  B ) `  (
f `  n )
)  /  ( ( k  e.  A  |->  C ) `  ( f `
 n ) ) ) ) )
7236, 61, 71sylc 60 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( k  e.  A  |->  ( B  /  C ) ) `  ( f `  n
) )  =  ( ( ( k  e.  A  |->  B ) `  ( f `  n
) )  /  (
( k  e.  A  |->  C ) `  (
f `  n )
) ) )
73 fvco3 5944 . . . . . . . . . 10  |-  ( ( f : ( 1 ... ( # `  A
) ) --> A  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  ( B  /  C ) )  o.  f ) `  n )  =  ( ( k  e.  A  |->  ( B  /  C
) ) `  (
f `  n )
) )
7433, 73sylan 471 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  ( B  /  C ) )  o.  f ) `  n )  =  ( ( k  e.  A  |->  ( B  /  C
) ) `  (
f `  n )
) )
75 fvco3 5944 . . . . . . . . . . 11  |-  ( ( f : ( 1 ... ( # `  A
) ) --> A  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  n )  =  ( ( k  e.  A  |->  B ) `  (
f `  n )
) )
7633, 75sylan 471 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  n )  =  ( ( k  e.  A  |->  B ) `  (
f `  n )
) )
7776, 35oveq12d 6302 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( ( k  e.  A  |->  B )  o.  f ) `
 n )  / 
( ( ( k  e.  A  |->  C )  o.  f ) `  n ) )  =  ( ( ( k  e.  A  |->  B ) `
 ( f `  n ) )  / 
( ( k  e.  A  |->  C ) `  ( f `  n
) ) ) )
7872, 74, 773eqtr4d 2518 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  ( B  /  C ) )  o.  f ) `  n )  =  ( ( ( ( k  e.  A  |->  B )  o.  f ) `  n )  /  (
( ( k  e.  A  |->  C )  o.  f ) `  n
) ) )
7917, 25, 31, 51, 78prodfdiv 28635 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (  seq 1 (  x.  , 
( ( k  e.  A  |->  ( B  /  C ) )  o.  f ) ) `  ( # `  A ) )  =  ( (  seq 1 (  x.  ,  ( ( k  e.  A  |->  B )  o.  f ) ) `
 ( # `  A
) )  /  (  seq 1 (  x.  , 
( ( k  e.  A  |->  C )  o.  f ) ) `  ( # `  A ) ) ) )
80 fveq2 5866 . . . . . . . 8  |-  ( m  =  ( f `  n )  ->  (
( k  e.  A  |->  ( B  /  C
) ) `  m
)  =  ( ( k  e.  A  |->  ( B  /  C ) ) `  ( f `
 n ) ) )
8152, 53fmptd 6045 . . . . . . . . . 10  |-  ( ph  ->  ( k  e.  A  |->  ( B  /  C
) ) : A --> CC )
8281adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (
k  e.  A  |->  ( B  /  C ) ) : A --> CC )
8382ffvelrnda 6021 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  m  e.  A )  ->  ( ( k  e.  A  |->  ( B  /  C ) ) `  m )  e.  CC )
8480, 15, 32, 83, 74fprod 28678 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  prod_ m  e.  A  ( ( k  e.  A  |->  ( B  /  C ) ) `  m )  =  (  seq 1
(  x.  ,  ( ( k  e.  A  |->  ( B  /  C
) )  o.  f
) ) `  ( # `
 A ) ) )
85 fveq2 5866 . . . . . . . . 9  |-  ( m  =  ( f `  n )  ->  (
( k  e.  A  |->  B ) `  m
)  =  ( ( k  e.  A  |->  B ) `  ( f `
 n ) ) )
8620adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (
k  e.  A  |->  B ) : A --> CC )
8786ffvelrnda 6021 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  m  e.  A )  ->  ( ( k  e.  A  |->  B ) `  m )  e.  CC )
8885, 15, 32, 87, 76fprod 28678 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  prod_ m  e.  A  ( ( k  e.  A  |->  B ) `  m )  =  (  seq 1
(  x.  ,  ( ( k  e.  A  |->  B )  o.  f
) ) `  ( # `
 A ) ) )
89 fveq2 5866 . . . . . . . . 9  |-  ( m  =  ( f `  n )  ->  (
( k  e.  A  |->  C ) `  m
)  =  ( ( k  e.  A  |->  C ) `  ( f `
 n ) ) )
9028adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (
k  e.  A  |->  C ) : A --> CC )
9190ffvelrnda 6021 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  m  e.  A )  ->  ( ( k  e.  A  |->  C ) `  m )  e.  CC )
9289, 15, 32, 91, 35fprod 28678 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  prod_ m  e.  A  ( ( k  e.  A  |->  C ) `  m )  =  (  seq 1
(  x.  ,  ( ( k  e.  A  |->  C )  o.  f
) ) `  ( # `
 A ) ) )
9388, 92oveq12d 6302 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( prod_ m  e.  A  ( ( k  e.  A  |->  B ) `  m
)  /  prod_ m  e.  A  ( (
k  e.  A  |->  C ) `  m ) )  =  ( (  seq 1 (  x.  ,  ( ( k  e.  A  |->  B )  o.  f ) ) `
 ( # `  A
) )  /  (  seq 1 (  x.  , 
( ( k  e.  A  |->  C )  o.  f ) ) `  ( # `  A ) ) ) )
9479, 84, 933eqtr4d 2518 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  prod_ m  e.  A  ( ( k  e.  A  |->  ( B  /  C ) ) `  m )  =  ( prod_ m  e.  A  ( (
k  e.  A  |->  B ) `  m )  /  prod_ m  e.  A  ( ( k  e.  A  |->  C ) `  m ) ) )
95 prodfc 28682 . . . . . 6  |-  prod_ m  e.  A  ( (
k  e.  A  |->  ( B  /  C ) ) `  m )  =  prod_ k  e.  A  ( B  /  C
)
96 prodfc 28682 . . . . . . 7  |-  prod_ m  e.  A  ( (
k  e.  A  |->  B ) `  m )  =  prod_ k  e.  A  B
97 prodfc 28682 . . . . . . 7  |-  prod_ m  e.  A  ( (
k  e.  A  |->  C ) `  m )  =  prod_ k  e.  A  C
9896, 97oveq12i 6296 . . . . . 6  |-  ( prod_
m  e.  A  ( ( k  e.  A  |->  B ) `  m
)  /  prod_ m  e.  A  ( (
k  e.  A  |->  C ) `  m ) )  =  ( prod_
k  e.  A  B  /  prod_ k  e.  A  C )
9994, 95, 983eqtr3g 2531 . . . . 5  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  prod_ k  e.  A  ( B  /  C )  =  ( prod_ k  e.  A  B  /  prod_ k  e.  A  C ) )
10099expr 615 . . . 4  |-  ( (
ph  /\  ( # `  A
)  e.  NN )  ->  ( f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A  ->  prod_ k  e.  A  ( B  /  C
)  =  ( prod_
k  e.  A  B  /  prod_ k  e.  A  C ) ) )
101100exlimdv 1700 . . 3  |-  ( (
ph  /\  ( # `  A
)  e.  NN )  ->  ( E. f 
f : ( 1 ... ( # `  A
) ) -1-1-onto-> A  ->  prod_ k  e.  A  ( B  /  C )  =  (
prod_ k  e.  A  B  /  prod_ k  e.  A  C ) ) )
102101expimpd 603 . 2  |-  ( ph  ->  ( ( ( # `  A )  e.  NN  /\ 
E. f  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A )  ->  prod_ k  e.  A  ( B  /  C )  =  (
prod_ k  e.  A  B  /  prod_ k  e.  A  C ) ) )
103 fprodmul.1 . . 3  |-  ( ph  ->  A  e.  Fin )
104 fz1f1o 13495 . . 3  |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  (
( # `  A )  e.  NN  /\  E. f  f : ( 1 ... ( # `  A ) ) -1-1-onto-> A ) ) )
105103, 104syl 16 . 2  |-  ( ph  ->  ( A  =  (/)  \/  ( ( # `  A
)  e.  NN  /\  E. f  f : ( 1 ... ( # `  A ) ) -1-1-onto-> A ) ) )
10614, 102, 105mpjaod 381 1  |-  ( ph  ->  prod_ k  e.  A  ( B  /  C
)  =  ( prod_
k  e.  A  B  /  prod_ k  e.  A  C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    = wceq 1379   E.wex 1596    e. wcel 1767    =/= wne 2662   A.wral 2814   (/)c0 3785    |-> cmpt 4505    o. ccom 5003   -->wf 5584   -1-1-onto->wf1o 5587   ` cfv 5588  (class class class)co 6284   Fincfn 7516   CCcc 9490   0cc0 9492   1c1 9493    x. cmul 9497    / cdiv 10206   NNcn 10536   ZZ>=cuz 11082   ...cfz 11672    seqcseq 12075   #chash 12373   prod_cprod 28642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-oadd 7134  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-sup 7901  df-oi 7935  df-card 8320  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-n0 10796  df-z 10865  df-uz 11083  df-rp 11221  df-fz 11673  df-fzo 11793  df-seq 12076  df-exp 12135  df-hash 12374  df-cj 12895  df-re 12896  df-im 12897  df-sqrt 13031  df-abs 13032  df-clim 13274  df-prod 28643
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator