Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fprodcnv Structured version   Unicode version

Theorem fprodcnv 28718
Description: Transform a product region using the converse operation. (Contributed by Scott Fenton, 1-Feb-2018.)
Hypotheses
Ref Expression
fprodcnv.1  |-  ( x  =  <. j ,  k
>.  ->  B  =  D )
fprodcnv.2  |-  ( y  =  <. k ,  j
>.  ->  C  =  D )
fprodcnv.3  |-  ( ph  ->  A  e.  Fin )
fprodcnv.4  |-  ( ph  ->  Rel  A )
fprodcnv.5  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
Assertion
Ref Expression
fprodcnv  |-  ( ph  ->  prod_ x  e.  A  B  =  prod_ y  e.  `'  A C )
Distinct variable groups:    x, A, y    B, j, k, y    C, j, k    x, D, y    j, k, x, y    ph, x, y
Allowed substitution hints:    ph( j, k)    A( j, k)    B( x)    C( x, y)    D( j, k)

Proof of Theorem fprodcnv
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 csbeq1a 3444 . . . 4  |-  ( x  =  <. ( 2nd `  y
) ,  ( 1st `  y ) >.  ->  B  =  [_ <. ( 2nd `  y
) ,  ( 1st `  y ) >.  /  x ]_ B )
2 fvex 5876 . . . . 5  |-  ( 2nd `  y )  e.  _V
3 fvex 5876 . . . . 5  |-  ( 1st `  y )  e.  _V
4 opex 4711 . . . . . . 7  |-  <. j ,  k >.  e.  _V
5 nfcv 2629 . . . . . . 7  |-  F/_ x D
6 fprodcnv.1 . . . . . . 7  |-  ( x  =  <. j ,  k
>.  ->  B  =  D )
74, 5, 6csbief 3460 . . . . . 6  |-  [_ <. j ,  k >.  /  x ]_ B  =  D
8 opeq12 4215 . . . . . . 7  |-  ( ( j  =  ( 2nd `  y )  /\  k  =  ( 1st `  y
) )  ->  <. j ,  k >.  =  <. ( 2nd `  y ) ,  ( 1st `  y
) >. )
98csbeq1d 3442 . . . . . 6  |-  ( ( j  =  ( 2nd `  y )  /\  k  =  ( 1st `  y
) )  ->  [_ <. j ,  k >.  /  x ]_ B  =  [_ <. ( 2nd `  y ) ,  ( 1st `  y
) >.  /  x ]_ B )
107, 9syl5eqr 2522 . . . . 5  |-  ( ( j  =  ( 2nd `  y )  /\  k  =  ( 1st `  y
) )  ->  D  =  [_ <. ( 2nd `  y
) ,  ( 1st `  y ) >.  /  x ]_ B )
112, 3, 10csbie2 3465 . . . 4  |-  [_ ( 2nd `  y )  / 
j ]_ [_ ( 1st `  y )  /  k ]_ D  =  [_ <. ( 2nd `  y ) ,  ( 1st `  y
) >.  /  x ]_ B
121, 11syl6eqr 2526 . . 3  |-  ( x  =  <. ( 2nd `  y
) ,  ( 1st `  y ) >.  ->  B  =  [_ ( 2nd `  y
)  /  j ]_ [_ ( 1st `  y
)  /  k ]_ D )
13 fprodcnv.3 . . . 4  |-  ( ph  ->  A  e.  Fin )
14 cnvfi 7804 . . . 4  |-  ( A  e.  Fin  ->  `' A  e.  Fin )
1513, 14syl 16 . . 3  |-  ( ph  ->  `' A  e.  Fin )
16 relcnv 5374 . . . . 5  |-  Rel  `' A
17 cnvf1o 6882 . . . . 5  |-  ( Rel  `' A  ->  ( z  e.  `' A  |->  U. `' { z } ) : `' A -1-1-onto-> `' `' A )
1816, 17ax-mp 5 . . . 4  |-  ( z  e.  `' A  |->  U. `' { z } ) : `' A -1-1-onto-> `' `' A
19 fprodcnv.4 . . . . . 6  |-  ( ph  ->  Rel  A )
20 dfrel2 5457 . . . . . 6  |-  ( Rel 
A  <->  `' `' A  =  A
)
2119, 20sylib 196 . . . . 5  |-  ( ph  ->  `' `' A  =  A
)
22 f1oeq3 5809 . . . . 5  |-  ( `' `' A  =  A  ->  ( ( z  e.  `' A  |->  U. `' { z } ) : `' A -1-1-onto-> `' `' A 
<->  ( z  e.  `' A  |->  U. `' { z } ) : `' A
-1-1-onto-> A ) )
2321, 22syl 16 . . . 4  |-  ( ph  ->  ( ( z  e.  `' A  |->  U. `' { z } ) : `' A -1-1-onto-> `' `' A 
<->  ( z  e.  `' A  |->  U. `' { z } ) : `' A
-1-1-onto-> A ) )
2418, 23mpbii 211 . . 3  |-  ( ph  ->  ( z  e.  `' A  |->  U. `' { z } ) : `' A
-1-1-onto-> A )
25 1st2nd 6830 . . . . . . 7  |-  ( ( Rel  `' A  /\  y  e.  `' A
)  ->  y  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >. )
2616, 25mpan 670 . . . . . 6  |-  ( y  e.  `' A  -> 
y  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >. )
2726fveq2d 5870 . . . . 5  |-  ( y  e.  `' A  -> 
( ( z  e.  `' A  |->  U. `' { z } ) `
 y )  =  ( ( z  e.  `' A  |->  U. `' { z } ) `
 <. ( 1st `  y
) ,  ( 2nd `  y ) >. )
)
2826eleq1d 2536 . . . . . . 7  |-  ( y  e.  `' A  -> 
( y  e.  `' A 
<-> 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  e.  `' A ) )
2928ibi 241 . . . . . 6  |-  ( y  e.  `' A  ->  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  e.  `' A )
30 sneq 4037 . . . . . . . . . 10  |-  ( z  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  ->  { z }  =  { <. ( 1st `  y ) ,  ( 2nd `  y
) >. } )
3130cnveqd 5178 . . . . . . . . 9  |-  ( z  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  ->  `' { z }  =  `' { <. ( 1st `  y
) ,  ( 2nd `  y ) >. } )
3231unieqd 4255 . . . . . . . 8  |-  ( z  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  ->  U. `' { z }  =  U. `' { <. ( 1st `  y
) ,  ( 2nd `  y ) >. } )
33 opswap 5495 . . . . . . . 8  |-  U. `' { <. ( 1st `  y
) ,  ( 2nd `  y ) >. }  =  <. ( 2nd `  y
) ,  ( 1st `  y ) >.
3432, 33syl6eq 2524 . . . . . . 7  |-  ( z  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  ->  U. `' { z }  =  <. ( 2nd `  y
) ,  ( 1st `  y ) >. )
35 eqid 2467 . . . . . . 7  |-  ( z  e.  `' A  |->  U. `' { z } )  =  ( z  e.  `' A  |->  U. `' { z } )
36 opex 4711 . . . . . . 7  |-  <. ( 2nd `  y ) ,  ( 1st `  y
) >.  e.  _V
3734, 35, 36fvmpt 5950 . . . . . 6  |-  ( <.
( 1st `  y
) ,  ( 2nd `  y ) >.  e.  `' A  ->  ( ( z  e.  `' A  |->  U. `' { z } ) `
 <. ( 1st `  y
) ,  ( 2nd `  y ) >. )  =  <. ( 2nd `  y
) ,  ( 1st `  y ) >. )
3829, 37syl 16 . . . . 5  |-  ( y  e.  `' A  -> 
( ( z  e.  `' A  |->  U. `' { z } ) `
 <. ( 1st `  y
) ,  ( 2nd `  y ) >. )  =  <. ( 2nd `  y
) ,  ( 1st `  y ) >. )
3927, 38eqtrd 2508 . . . 4  |-  ( y  e.  `' A  -> 
( ( z  e.  `' A  |->  U. `' { z } ) `
 y )  = 
<. ( 2nd `  y
) ,  ( 1st `  y ) >. )
4039adantl 466 . . 3  |-  ( (
ph  /\  y  e.  `' A )  ->  (
( z  e.  `' A  |->  U. `' { z } ) `  y
)  =  <. ( 2nd `  y ) ,  ( 1st `  y
) >. )
41 fprodcnv.5 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
4212, 15, 24, 40, 41fprodf1o 28683 . 2  |-  ( ph  ->  prod_ x  e.  A  B  =  prod_ y  e.  `'  A [_ ( 2nd `  y )  /  j ]_ [_ ( 1st `  y
)  /  k ]_ D )
43 csbeq1a 3444 . . . . 5  |-  ( y  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  ->  C  =  [_ <. ( 1st `  y
) ,  ( 2nd `  y ) >.  /  y ]_ C )
4426, 43syl 16 . . . 4  |-  ( y  e.  `' A  ->  C  =  [_ <. ( 1st `  y ) ,  ( 2nd `  y
) >.  /  y ]_ C )
45 opex 4711 . . . . . . 7  |-  <. k ,  j >.  e.  _V
46 nfcv 2629 . . . . . . 7  |-  F/_ y D
47 fprodcnv.2 . . . . . . 7  |-  ( y  =  <. k ,  j
>.  ->  C  =  D )
4845, 46, 47csbief 3460 . . . . . 6  |-  [_ <. k ,  j >.  /  y ]_ C  =  D
49 opeq12 4215 . . . . . . . 8  |-  ( ( k  =  ( 1st `  y )  /\  j  =  ( 2nd `  y
) )  ->  <. k ,  j >.  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >. )
5049ancoms 453 . . . . . . 7  |-  ( ( j  =  ( 2nd `  y )  /\  k  =  ( 1st `  y
) )  ->  <. k ,  j >.  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >. )
5150csbeq1d 3442 . . . . . 6  |-  ( ( j  =  ( 2nd `  y )  /\  k  =  ( 1st `  y
) )  ->  [_ <. k ,  j >.  /  y ]_ C  =  [_ <. ( 1st `  y ) ,  ( 2nd `  y
) >.  /  y ]_ C )
5248, 51syl5eqr 2522 . . . . 5  |-  ( ( j  =  ( 2nd `  y )  /\  k  =  ( 1st `  y
) )  ->  D  =  [_ <. ( 1st `  y
) ,  ( 2nd `  y ) >.  /  y ]_ C )
532, 3, 52csbie2 3465 . . . 4  |-  [_ ( 2nd `  y )  / 
j ]_ [_ ( 1st `  y )  /  k ]_ D  =  [_ <. ( 1st `  y ) ,  ( 2nd `  y
) >.  /  y ]_ C
5444, 53syl6eqr 2526 . . 3  |-  ( y  e.  `' A  ->  C  =  [_ ( 2nd `  y )  /  j ]_ [_ ( 1st `  y
)  /  k ]_ D )
5554prodeq2i 28656 . 2  |-  prod_ y  e.  `'  A C  =  prod_ y  e.  `'  A [_ ( 2nd `  y )  /  j ]_ [_ ( 1st `  y )  / 
k ]_ D
5642, 55syl6eqr 2526 1  |-  ( ph  ->  prod_ x  e.  A  B  =  prod_ y  e.  `'  A C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   [_csb 3435   {csn 4027   <.cop 4033   U.cuni 4245    |-> cmpt 4505   `'ccnv 4998   Rel wrel 5004   -1-1-onto->wf1o 5587   ` cfv 5588   1stc1st 6782   2ndc2nd 6783   Fincfn 7516   CCcc 9490   prod_cprod 28642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-oadd 7134  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-sup 7901  df-oi 7935  df-card 8320  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-n0 10796  df-z 10865  df-uz 11083  df-rp 11221  df-fz 11673  df-fzo 11793  df-seq 12076  df-exp 12135  df-hash 12374  df-cj 12895  df-re 12896  df-im 12897  df-sqrt 13031  df-abs 13032  df-clim 13274  df-prod 28643
This theorem is referenced by:  fprodcom2  28719
  Copyright terms: Public domain W3C validator