Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fprod2d Structured version   Unicode version

Theorem fprod2d 27490
Description: Write a double product as a product over a two-dimensional region. Compare fsum2d 13236. (Contributed by Scott Fenton, 30-Jan-2018.)
Hypotheses
Ref Expression
fprod2d.1  |-  ( z  =  <. j ,  k
>.  ->  D  =  C )
fprod2d.2  |-  ( ph  ->  A  e.  Fin )
fprod2d.3  |-  ( (
ph  /\  j  e.  A )  ->  B  e.  Fin )
fprod2d.4  |-  ( (
ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )
Assertion
Ref Expression
fprod2d  |-  ( ph  ->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D )
Distinct variable groups:    A, j,
k, z    B, k,
z    z, C    D, j,
k    ph, j, z, k
Allowed substitution hints:    B( j)    C( j, k)    D( z)

Proof of Theorem fprod2d
Dummy variables  w  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3373 . 2  |-  A  C_  A
2 fprod2d.2 . . 3  |-  ( ph  ->  A  e.  Fin )
3 sseq1 3375 . . . . . 6  |-  ( w  =  (/)  ->  ( w 
C_  A  <->  (/)  C_  A
) )
4 prodeq1 27420 . . . . . . 7  |-  ( w  =  (/)  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ j  e.  (/)  prod_ k  e.  B  C )
5 iuneq1 4182 . . . . . . . . 9  |-  ( w  =  (/)  ->  U_ j  e.  w  ( {
j }  X.  B
)  =  U_ j  e.  (/)  ( { j }  X.  B ) )
6 0iun 4225 . . . . . . . . 9  |-  U_ j  e.  (/)  ( { j }  X.  B )  =  (/)
75, 6syl6eq 2489 . . . . . . . 8  |-  ( w  =  (/)  ->  U_ j  e.  w  ( {
j }  X.  B
)  =  (/) )
87prodeq1d 27432 . . . . . . 7  |-  ( w  =  (/)  ->  prod_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  = 
prod_ z  e.  (/)  D )
94, 8eqeq12d 2455 . . . . . 6  |-  ( w  =  (/)  ->  ( prod_
j  e.  w  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  w  ( {
j }  X.  B
) D  <->  prod_ j  e.  (/)  prod_ k  e.  B  C  =  prod_ z  e.  (/)  D ) )
103, 9imbi12d 320 . . . . 5  |-  ( w  =  (/)  ->  ( ( w  C_  A  ->  prod_
j  e.  w  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  w  ( {
j }  X.  B
) D )  <->  ( (/)  C_  A  ->  prod_ j  e.  (/)  prod_
k  e.  B  C  =  prod_ z  e.  (/)  D ) ) )
1110imbi2d 316 . . . 4  |-  ( w  =  (/)  ->  ( (
ph  ->  ( w  C_  A  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D ) )  <->  ( ph  ->  (
(/)  C_  A  ->  prod_ j  e.  (/)  prod_ k  e.  B  C  =  prod_ z  e.  (/)  D ) ) ) )
12 sseq1 3375 . . . . . 6  |-  ( w  =  x  ->  (
w  C_  A  <->  x  C_  A
) )
13 prodeq1 27420 . . . . . . 7  |-  ( w  =  x  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ j  e.  x  prod_ k  e.  B  C )
14 iuneq1 4182 . . . . . . . 8  |-  ( w  =  x  ->  U_ j  e.  w  ( {
j }  X.  B
)  =  U_ j  e.  x  ( {
j }  X.  B
) )
1514prodeq1d 27432 . . . . . . 7  |-  ( w  =  x  ->  prod_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  =  prod_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D )
1613, 15eqeq12d 2455 . . . . . 6  |-  ( w  =  x  ->  ( prod_ j  e.  w  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  w  ( {
j }  X.  B
) D  <->  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e. 
U_  j  e.  x  ( { j }  X.  B ) D ) )
1712, 16imbi12d 320 . . . . 5  |-  ( w  =  x  ->  (
( w  C_  A  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D )  <-> 
( x  C_  A  ->  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D ) ) )
1817imbi2d 316 . . . 4  |-  ( w  =  x  ->  (
( ph  ->  ( w 
C_  A  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  w  ( {
j }  X.  B
) D ) )  <-> 
( ph  ->  ( x 
C_  A  ->  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  x  ( {
j }  X.  B
) D ) ) ) )
19 sseq1 3375 . . . . . 6  |-  ( w  =  ( x  u. 
{ y } )  ->  ( w  C_  A 
<->  ( x  u.  {
y } )  C_  A ) )
20 prodeq1 27420 . . . . . . 7  |-  ( w  =  ( x  u. 
{ y } )  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ j  e.  ( x  u.  { y } ) prod_ k  e.  B  C )
21 iuneq1 4182 . . . . . . . 8  |-  ( w  =  ( x  u. 
{ y } )  ->  U_ j  e.  w  ( { j }  X.  B )  =  U_ j  e.  ( x  u.  { y } ) ( { j }  X.  B ) )
2221prodeq1d 27432 . . . . . . 7  |-  ( w  =  ( x  u. 
{ y } )  ->  prod_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  = 
prod_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D )
2320, 22eqeq12d 2455 . . . . . 6  |-  ( w  =  ( x  u. 
{ y } )  ->  ( prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  <->  prod_ j  e.  ( x  u.  { y } ) prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D ) )
2419, 23imbi12d 320 . . . . 5  |-  ( w  =  ( x  u. 
{ y } )  ->  ( ( w 
C_  A  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  w  ( {
j }  X.  B
) D )  <->  ( (
x  u.  { y } )  C_  A  ->  prod_ j  e.  ( x  u.  { y } ) prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D ) ) )
2524imbi2d 316 . . . 4  |-  ( w  =  ( x  u. 
{ y } )  ->  ( ( ph  ->  ( w  C_  A  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D ) )  <->  ( ph  ->  ( ( x  u.  {
y } )  C_  A  ->  prod_ j  e.  ( x  u.  { y } ) prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D ) ) ) )
26 sseq1 3375 . . . . . 6  |-  ( w  =  A  ->  (
w  C_  A  <->  A  C_  A
) )
27 prodeq1 27420 . . . . . . 7  |-  ( w  =  A  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ j  e.  A  prod_ k  e.  B  C )
28 iuneq1 4182 . . . . . . . 8  |-  ( w  =  A  ->  U_ j  e.  w  ( {
j }  X.  B
)  =  U_ j  e.  A  ( {
j }  X.  B
) )
2928prodeq1d 27432 . . . . . . 7  |-  ( w  =  A  ->  prod_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  =  prod_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D )
3027, 29eqeq12d 2455 . . . . . 6  |-  ( w  =  A  ->  ( prod_ j  e.  w  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  w  ( {
j }  X.  B
) D  <->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ z  e. 
U_  j  e.  A  ( { j }  X.  B ) D ) )
3126, 30imbi12d 320 . . . . 5  |-  ( w  =  A  ->  (
( w  C_  A  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D )  <-> 
( A  C_  A  ->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D ) ) )
3231imbi2d 316 . . . 4  |-  ( w  =  A  ->  (
( ph  ->  ( w 
C_  A  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  w  ( {
j }  X.  B
) D ) )  <-> 
( ph  ->  ( A 
C_  A  ->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  A  ( {
j }  X.  B
) D ) ) ) )
33 prod0 27454 . . . . . . 7  |-  prod_ j  e.  (/)  prod_ k  e.  B  C  =  1
34 prod0 27454 . . . . . . 7  |-  prod_ z  e.  (/)  D  =  1
3533, 34eqtr4i 2464 . . . . . 6  |-  prod_ j  e.  (/)  prod_ k  e.  B  C  =  prod_ z  e.  (/)  D
3635a1i 11 . . . . 5  |-  ( (/)  C_  A  ->  prod_ j  e.  (/)  prod_ k  e.  B  C  =  prod_ z  e.  (/)  D )
3736a1i 11 . . . 4  |-  ( ph  ->  ( (/)  C_  A  ->  prod_ j  e.  (/)  prod_ k  e.  B  C  =  prod_ z  e.  (/)  D ) )
38 ssun1 3517 . . . . . . . . . 10  |-  x  C_  ( x  u.  { y } )
39 sstr 3362 . . . . . . . . . 10  |-  ( ( x  C_  ( x  u.  { y } )  /\  ( x  u. 
{ y } ) 
C_  A )  ->  x  C_  A )
4038, 39mpan 670 . . . . . . . . 9  |-  ( ( x  u.  { y } )  C_  A  ->  x  C_  A )
4140imim1i 58 . . . . . . . 8  |-  ( ( x  C_  A  ->  prod_
j  e.  x  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  x  ( {
j }  X.  B
) D )  -> 
( ( x  u. 
{ y } ) 
C_  A  ->  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  x  ( {
j }  X.  B
) D ) )
42 fprod2d.1 . . . . . . . . . . 11  |-  ( z  =  <. j ,  k
>.  ->  D  =  C )
432adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  -.  y  e.  x )  ->  A  e.  Fin )
4443adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  A  e.  Fin )
45 fprod2d.3 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  A )  ->  B  e.  Fin )
4645adantlr 714 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  j  e.  A
)  ->  B  e.  Fin )
4746adantlr 714 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  -.  y  e.  x
)  /\  ( x  u.  { y } ) 
C_  A )  /\  j  e.  A )  ->  B  e.  Fin )
48 fprod2d.4 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )
4948adantlr 714 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( j  e.  A  /\  k  e.  B
) )  ->  C  e.  CC )
5049adantlr 714 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  -.  y  e.  x
)  /\  ( x  u.  { y } ) 
C_  A )  /\  ( j  e.  A  /\  k  e.  B
) )  ->  C  e.  CC )
51 simplr 754 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  -.  y  e.  x )
52 simpr 461 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  (
x  u.  { y } )  C_  A
)
53 biid 236 . . . . . . . . . . 11  |-  ( prod_
j  e.  x  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  x  ( {
j }  X.  B
) D  <->  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e. 
U_  j  e.  x  ( { j }  X.  B ) D )
5442, 44, 47, 50, 51, 52, 53fprod2dlem 27489 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  -.  y  e.  x
)  /\  ( x  u.  { y } ) 
C_  A )  /\  prod_ j  e.  x  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  x  ( {
j }  X.  B
) D )  ->  prod_ j  e.  ( x  u.  { y } ) prod_ k  e.  B  C  =  prod_ z  e. 
U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B
) D )
5554exp31 604 . . . . . . . . 9  |-  ( (
ph  /\  -.  y  e.  x )  ->  (
( x  u.  {
y } )  C_  A  ->  ( prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D  ->  prod_ j  e.  ( x  u.  {
y } ) prod_
k  e.  B  C  =  prod_ z  e.  U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B ) D ) ) )
5655a2d 26 . . . . . . . 8  |-  ( (
ph  /\  -.  y  e.  x )  ->  (
( ( x  u. 
{ y } ) 
C_  A  ->  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  x  ( {
j }  X.  B
) D )  -> 
( ( x  u. 
{ y } ) 
C_  A  ->  prod_ j  e.  ( x  u. 
{ y } )
prod_ k  e.  B  C  =  prod_ z  e. 
U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B
) D ) ) )
5741, 56syl5 32 . . . . . . 7  |-  ( (
ph  /\  -.  y  e.  x )  ->  (
( x  C_  A  ->  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D )  ->  ( ( x  u.  { y } )  C_  A  ->  prod_
j  e.  ( x  u.  { y } ) prod_ k  e.  B  C  =  prod_ z  e. 
U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B
) D ) ) )
5857expcom 435 . . . . . 6  |-  ( -.  y  e.  x  -> 
( ph  ->  ( ( x  C_  A  ->  prod_
j  e.  x  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  x  ( {
j }  X.  B
) D )  -> 
( ( x  u. 
{ y } ) 
C_  A  ->  prod_ j  e.  ( x  u. 
{ y } )
prod_ k  e.  B  C  =  prod_ z  e. 
U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B
) D ) ) ) )
5958a2d 26 . . . . 5  |-  ( -.  y  e.  x  -> 
( ( ph  ->  ( x  C_  A  ->  prod_
j  e.  x  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  x  ( {
j }  X.  B
) D ) )  ->  ( ph  ->  ( ( x  u.  {
y } )  C_  A  ->  prod_ j  e.  ( x  u.  { y } ) prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D ) ) ) )
6059adantl 466 . . . 4  |-  ( ( x  e.  Fin  /\  -.  y  e.  x
)  ->  ( ( ph  ->  ( x  C_  A  ->  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D ) )  ->  ( ph  ->  ( ( x  u. 
{ y } ) 
C_  A  ->  prod_ j  e.  ( x  u. 
{ y } )
prod_ k  e.  B  C  =  prod_ z  e. 
U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B
) D ) ) ) )
6111, 18, 25, 32, 37, 60findcard2s 7551 . . 3  |-  ( A  e.  Fin  ->  ( ph  ->  ( A  C_  A  ->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D ) ) )
622, 61mpcom 36 . 2  |-  ( ph  ->  ( A  C_  A  ->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D ) )
631, 62mpi 17 1  |-  ( ph  ->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756    u. cun 3324    C_ wss 3326   (/)c0 3635   {csn 3875   <.cop 3881   U_ciun 4169    X. cxp 4836   Fincfn 7308   CCcc 9278   1c1 9281   prod_cprod 27416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-rep 4401  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370  ax-inf2 7845  ax-cnex 9336  ax-resscn 9337  ax-1cn 9338  ax-icn 9339  ax-addcl 9340  ax-addrcl 9341  ax-mulcl 9342  ax-mulrcl 9343  ax-mulcom 9344  ax-addass 9345  ax-mulass 9346  ax-distr 9347  ax-i2m1 9348  ax-1ne0 9349  ax-1rid 9350  ax-rnegex 9351  ax-rrecex 9352  ax-cnre 9353  ax-pre-lttri 9354  ax-pre-lttrn 9355  ax-pre-ltadd 9356  ax-pre-mulgt0 9357  ax-pre-sup 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-pss 3342  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-tp 3880  df-op 3882  df-uni 4090  df-int 4127  df-iun 4171  df-br 4291  df-opab 4349  df-mpt 4350  df-tr 4384  df-eprel 4630  df-id 4634  df-po 4639  df-so 4640  df-fr 4677  df-se 4678  df-we 4679  df-ord 4720  df-on 4721  df-lim 4722  df-suc 4723  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-isom 5425  df-riota 6050  df-ov 6092  df-oprab 6093  df-mpt2 6094  df-om 6475  df-1st 6575  df-2nd 6576  df-recs 6830  df-rdg 6864  df-1o 6918  df-oadd 6922  df-er 7099  df-en 7309  df-dom 7310  df-sdom 7311  df-fin 7312  df-sup 7689  df-oi 7722  df-card 8107  df-pnf 9418  df-mnf 9419  df-xr 9420  df-ltxr 9421  df-le 9422  df-sub 9595  df-neg 9596  df-div 9992  df-nn 10321  df-2 10378  df-3 10379  df-n0 10578  df-z 10645  df-uz 10860  df-rp 10990  df-fz 11436  df-fzo 11547  df-seq 11805  df-exp 11864  df-hash 12102  df-cj 12586  df-re 12587  df-im 12588  df-sqr 12722  df-abs 12723  df-clim 12964  df-prod 27417
This theorem is referenced by:  fprodxp  27491  fprodcom2  27493
  Copyright terms: Public domain W3C validator