Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fprod2d Structured version   Unicode version

Theorem fprod2d 28674
Description: Write a double product as a product over a two-dimensional region. Compare fsum2d 13535. (Contributed by Scott Fenton, 30-Jan-2018.)
Hypotheses
Ref Expression
fprod2d.1  |-  ( z  =  <. j ,  k
>.  ->  D  =  C )
fprod2d.2  |-  ( ph  ->  A  e.  Fin )
fprod2d.3  |-  ( (
ph  /\  j  e.  A )  ->  B  e.  Fin )
fprod2d.4  |-  ( (
ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )
Assertion
Ref Expression
fprod2d  |-  ( ph  ->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D )
Distinct variable groups:    A, j,
k, z    B, k,
z    z, C    D, j,
k    ph, j, z, k
Allowed substitution hints:    B( j)    C( j, k)    D( z)

Proof of Theorem fprod2d
Dummy variables  w  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3516 . 2  |-  A  C_  A
2 fprod2d.2 . . 3  |-  ( ph  ->  A  e.  Fin )
3 sseq1 3518 . . . . . 6  |-  ( w  =  (/)  ->  ( w 
C_  A  <->  (/)  C_  A
) )
4 prodeq1 28604 . . . . . . 7  |-  ( w  =  (/)  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ j  e.  (/)  prod_ k  e.  B  C )
5 iuneq1 4332 . . . . . . . . 9  |-  ( w  =  (/)  ->  U_ j  e.  w  ( {
j }  X.  B
)  =  U_ j  e.  (/)  ( { j }  X.  B ) )
6 0iun 4375 . . . . . . . . 9  |-  U_ j  e.  (/)  ( { j }  X.  B )  =  (/)
75, 6syl6eq 2517 . . . . . . . 8  |-  ( w  =  (/)  ->  U_ j  e.  w  ( {
j }  X.  B
)  =  (/) )
87prodeq1d 28616 . . . . . . 7  |-  ( w  =  (/)  ->  prod_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  = 
prod_ z  e.  (/)  D )
94, 8eqeq12d 2482 . . . . . 6  |-  ( w  =  (/)  ->  ( prod_
j  e.  w  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  w  ( {
j }  X.  B
) D  <->  prod_ j  e.  (/)  prod_ k  e.  B  C  =  prod_ z  e.  (/)  D ) )
103, 9imbi12d 320 . . . . 5  |-  ( w  =  (/)  ->  ( ( w  C_  A  ->  prod_
j  e.  w  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  w  ( {
j }  X.  B
) D )  <->  ( (/)  C_  A  ->  prod_ j  e.  (/)  prod_
k  e.  B  C  =  prod_ z  e.  (/)  D ) ) )
1110imbi2d 316 . . . 4  |-  ( w  =  (/)  ->  ( (
ph  ->  ( w  C_  A  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D ) )  <->  ( ph  ->  (
(/)  C_  A  ->  prod_ j  e.  (/)  prod_ k  e.  B  C  =  prod_ z  e.  (/)  D ) ) ) )
12 sseq1 3518 . . . . . 6  |-  ( w  =  x  ->  (
w  C_  A  <->  x  C_  A
) )
13 prodeq1 28604 . . . . . . 7  |-  ( w  =  x  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ j  e.  x  prod_ k  e.  B  C )
14 iuneq1 4332 . . . . . . . 8  |-  ( w  =  x  ->  U_ j  e.  w  ( {
j }  X.  B
)  =  U_ j  e.  x  ( {
j }  X.  B
) )
1514prodeq1d 28616 . . . . . . 7  |-  ( w  =  x  ->  prod_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  =  prod_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D )
1613, 15eqeq12d 2482 . . . . . 6  |-  ( w  =  x  ->  ( prod_ j  e.  w  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  w  ( {
j }  X.  B
) D  <->  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e. 
U_  j  e.  x  ( { j }  X.  B ) D ) )
1712, 16imbi12d 320 . . . . 5  |-  ( w  =  x  ->  (
( w  C_  A  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D )  <-> 
( x  C_  A  ->  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D ) ) )
1817imbi2d 316 . . . 4  |-  ( w  =  x  ->  (
( ph  ->  ( w 
C_  A  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  w  ( {
j }  X.  B
) D ) )  <-> 
( ph  ->  ( x 
C_  A  ->  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  x  ( {
j }  X.  B
) D ) ) ) )
19 sseq1 3518 . . . . . 6  |-  ( w  =  ( x  u. 
{ y } )  ->  ( w  C_  A 
<->  ( x  u.  {
y } )  C_  A ) )
20 prodeq1 28604 . . . . . . 7  |-  ( w  =  ( x  u. 
{ y } )  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ j  e.  ( x  u.  { y } ) prod_ k  e.  B  C )
21 iuneq1 4332 . . . . . . . 8  |-  ( w  =  ( x  u. 
{ y } )  ->  U_ j  e.  w  ( { j }  X.  B )  =  U_ j  e.  ( x  u.  { y } ) ( { j }  X.  B ) )
2221prodeq1d 28616 . . . . . . 7  |-  ( w  =  ( x  u. 
{ y } )  ->  prod_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  = 
prod_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D )
2320, 22eqeq12d 2482 . . . . . 6  |-  ( w  =  ( x  u. 
{ y } )  ->  ( prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  <->  prod_ j  e.  ( x  u.  { y } ) prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D ) )
2419, 23imbi12d 320 . . . . 5  |-  ( w  =  ( x  u. 
{ y } )  ->  ( ( w 
C_  A  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  w  ( {
j }  X.  B
) D )  <->  ( (
x  u.  { y } )  C_  A  ->  prod_ j  e.  ( x  u.  { y } ) prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D ) ) )
2524imbi2d 316 . . . 4  |-  ( w  =  ( x  u. 
{ y } )  ->  ( ( ph  ->  ( w  C_  A  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D ) )  <->  ( ph  ->  ( ( x  u.  {
y } )  C_  A  ->  prod_ j  e.  ( x  u.  { y } ) prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D ) ) ) )
26 sseq1 3518 . . . . . 6  |-  ( w  =  A  ->  (
w  C_  A  <->  A  C_  A
) )
27 prodeq1 28604 . . . . . . 7  |-  ( w  =  A  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ j  e.  A  prod_ k  e.  B  C )
28 iuneq1 4332 . . . . . . . 8  |-  ( w  =  A  ->  U_ j  e.  w  ( {
j }  X.  B
)  =  U_ j  e.  A  ( {
j }  X.  B
) )
2928prodeq1d 28616 . . . . . . 7  |-  ( w  =  A  ->  prod_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  =  prod_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D )
3027, 29eqeq12d 2482 . . . . . 6  |-  ( w  =  A  ->  ( prod_ j  e.  w  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  w  ( {
j }  X.  B
) D  <->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ z  e. 
U_  j  e.  A  ( { j }  X.  B ) D ) )
3126, 30imbi12d 320 . . . . 5  |-  ( w  =  A  ->  (
( w  C_  A  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D )  <-> 
( A  C_  A  ->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D ) ) )
3231imbi2d 316 . . . 4  |-  ( w  =  A  ->  (
( ph  ->  ( w 
C_  A  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  w  ( {
j }  X.  B
) D ) )  <-> 
( ph  ->  ( A 
C_  A  ->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  A  ( {
j }  X.  B
) D ) ) ) )
33 prod0 28638 . . . . . . 7  |-  prod_ j  e.  (/)  prod_ k  e.  B  C  =  1
34 prod0 28638 . . . . . . 7  |-  prod_ z  e.  (/)  D  =  1
3533, 34eqtr4i 2492 . . . . . 6  |-  prod_ j  e.  (/)  prod_ k  e.  B  C  =  prod_ z  e.  (/)  D
3635a1i 11 . . . . 5  |-  ( (/)  C_  A  ->  prod_ j  e.  (/)  prod_ k  e.  B  C  =  prod_ z  e.  (/)  D )
3736a1i 11 . . . 4  |-  ( ph  ->  ( (/)  C_  A  ->  prod_ j  e.  (/)  prod_ k  e.  B  C  =  prod_ z  e.  (/)  D ) )
38 ssun1 3660 . . . . . . . . . 10  |-  x  C_  ( x  u.  { y } )
39 sstr 3505 . . . . . . . . . 10  |-  ( ( x  C_  ( x  u.  { y } )  /\  ( x  u. 
{ y } ) 
C_  A )  ->  x  C_  A )
4038, 39mpan 670 . . . . . . . . 9  |-  ( ( x  u.  { y } )  C_  A  ->  x  C_  A )
4140imim1i 58 . . . . . . . 8  |-  ( ( x  C_  A  ->  prod_
j  e.  x  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  x  ( {
j }  X.  B
) D )  -> 
( ( x  u. 
{ y } ) 
C_  A  ->  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  x  ( {
j }  X.  B
) D ) )
42 fprod2d.1 . . . . . . . . . . 11  |-  ( z  =  <. j ,  k
>.  ->  D  =  C )
432adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  -.  y  e.  x )  ->  A  e.  Fin )
4443adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  A  e.  Fin )
45 fprod2d.3 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  A )  ->  B  e.  Fin )
4645adantlr 714 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  j  e.  A
)  ->  B  e.  Fin )
4746adantlr 714 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  -.  y  e.  x
)  /\  ( x  u.  { y } ) 
C_  A )  /\  j  e.  A )  ->  B  e.  Fin )
48 fprod2d.4 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )
4948adantlr 714 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( j  e.  A  /\  k  e.  B
) )  ->  C  e.  CC )
5049adantlr 714 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  -.  y  e.  x
)  /\  ( x  u.  { y } ) 
C_  A )  /\  ( j  e.  A  /\  k  e.  B
) )  ->  C  e.  CC )
51 simplr 754 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  -.  y  e.  x )
52 simpr 461 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  (
x  u.  { y } )  C_  A
)
53 biid 236 . . . . . . . . . . 11  |-  ( prod_
j  e.  x  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  x  ( {
j }  X.  B
) D  <->  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e. 
U_  j  e.  x  ( { j }  X.  B ) D )
5442, 44, 47, 50, 51, 52, 53fprod2dlem 28673 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  -.  y  e.  x
)  /\  ( x  u.  { y } ) 
C_  A )  /\  prod_ j  e.  x  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  x  ( {
j }  X.  B
) D )  ->  prod_ j  e.  ( x  u.  { y } ) prod_ k  e.  B  C  =  prod_ z  e. 
U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B
) D )
5554exp31 604 . . . . . . . . 9  |-  ( (
ph  /\  -.  y  e.  x )  ->  (
( x  u.  {
y } )  C_  A  ->  ( prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D  ->  prod_ j  e.  ( x  u.  {
y } ) prod_
k  e.  B  C  =  prod_ z  e.  U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B ) D ) ) )
5655a2d 26 . . . . . . . 8  |-  ( (
ph  /\  -.  y  e.  x )  ->  (
( ( x  u. 
{ y } ) 
C_  A  ->  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  x  ( {
j }  X.  B
) D )  -> 
( ( x  u. 
{ y } ) 
C_  A  ->  prod_ j  e.  ( x  u. 
{ y } )
prod_ k  e.  B  C  =  prod_ z  e. 
U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B
) D ) ) )
5741, 56syl5 32 . . . . . . 7  |-  ( (
ph  /\  -.  y  e.  x )  ->  (
( x  C_  A  ->  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D )  ->  ( ( x  u.  { y } )  C_  A  ->  prod_
j  e.  ( x  u.  { y } ) prod_ k  e.  B  C  =  prod_ z  e. 
U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B
) D ) ) )
5857expcom 435 . . . . . 6  |-  ( -.  y  e.  x  -> 
( ph  ->  ( ( x  C_  A  ->  prod_
j  e.  x  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  x  ( {
j }  X.  B
) D )  -> 
( ( x  u. 
{ y } ) 
C_  A  ->  prod_ j  e.  ( x  u. 
{ y } )
prod_ k  e.  B  C  =  prod_ z  e. 
U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B
) D ) ) ) )
5958a2d 26 . . . . 5  |-  ( -.  y  e.  x  -> 
( ( ph  ->  ( x  C_  A  ->  prod_
j  e.  x  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  x  ( {
j }  X.  B
) D ) )  ->  ( ph  ->  ( ( x  u.  {
y } )  C_  A  ->  prod_ j  e.  ( x  u.  { y } ) prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D ) ) ) )
6059adantl 466 . . . 4  |-  ( ( x  e.  Fin  /\  -.  y  e.  x
)  ->  ( ( ph  ->  ( x  C_  A  ->  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D ) )  ->  ( ph  ->  ( ( x  u. 
{ y } ) 
C_  A  ->  prod_ j  e.  ( x  u. 
{ y } )
prod_ k  e.  B  C  =  prod_ z  e. 
U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B
) D ) ) ) )
6111, 18, 25, 32, 37, 60findcard2s 7750 . . 3  |-  ( A  e.  Fin  ->  ( ph  ->  ( A  C_  A  ->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D ) ) )
622, 61mpcom 36 . 2  |-  ( ph  ->  ( A  C_  A  ->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D ) )
631, 62mpi 17 1  |-  ( ph  ->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1374    e. wcel 1762    u. cun 3467    C_ wss 3469   (/)c0 3778   {csn 4020   <.cop 4026   U_ciun 4318    X. cxp 4990   Fincfn 7506   CCcc 9479   1c1 9482   prod_cprod 28600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-inf2 8047  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-fal 1380  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-se 4832  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-isom 5588  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-1o 7120  df-oadd 7124  df-er 7301  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-sup 7890  df-oi 7924  df-card 8309  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-nn 10526  df-2 10583  df-3 10584  df-n0 10785  df-z 10854  df-uz 11072  df-rp 11210  df-fz 11662  df-fzo 11782  df-seq 12064  df-exp 12123  df-hash 12361  df-cj 12882  df-re 12883  df-im 12884  df-sqr 13018  df-abs 13019  df-clim 13260  df-prod 28601
This theorem is referenced by:  fprodxp  28675  fprodcom2  28677
  Copyright terms: Public domain W3C validator