Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fprod Structured version   Unicode version

Theorem fprod 27457
Description: The value of a product over a nonempty finite set. (Contributed by Scott Fenton, 6-Dec-2017.)
Hypotheses
Ref Expression
fprod.1  |-  ( k  =  ( F `  n )  ->  B  =  C )
fprod.2  |-  ( ph  ->  M  e.  NN )
fprod.3  |-  ( ph  ->  F : ( 1 ... M ) -1-1-onto-> A )
fprod.4  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
fprod.5  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  ( G `  n )  =  C )
Assertion
Ref Expression
fprod  |-  ( ph  ->  prod_ k  e.  A  B  =  (  seq 1 (  x.  ,  G ) `  M
) )
Distinct variable groups:    A, k, n    B, n    C, k   
k, F, n    k, G, n    ph, k    k, M, n    ph, n
Allowed substitution hints:    B( k)    C( n)

Proof of Theorem fprod
Dummy variables  f 
i  j  m  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-prod 27422 . 2  |-  prod_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )
2 fvex 5704 . . 3  |-  (  seq 1 (  x.  ,  G ) `  M
)  e.  _V
3 nfcv 2582 . . . . . . . . 9  |-  F/_ j if ( k  e.  A ,  B ,  1 )
4 nfv 1673 . . . . . . . . . 10  |-  F/ k  j  e.  A
5 nfcsb1v 3307 . . . . . . . . . 10  |-  F/_ k [_ j  /  k ]_ B
6 nfcv 2582 . . . . . . . . . 10  |-  F/_ k
1
74, 5, 6nfif 3821 . . . . . . . . 9  |-  F/_ k if ( j  e.  A ,  [_ j  /  k ]_ B ,  1 )
8 eleq1 2503 . . . . . . . . . 10  |-  ( k  =  j  ->  (
k  e.  A  <->  j  e.  A ) )
9 csbeq1a 3300 . . . . . . . . . 10  |-  ( k  =  j  ->  B  =  [_ j  /  k ]_ B )
10 eqidd 2444 . . . . . . . . . 10  |-  ( k  =  j  ->  1  =  1 )
118, 9, 10ifbieq12d 3819 . . . . . . . . 9  |-  ( k  =  j  ->  if ( k  e.  A ,  B ,  1 )  =  if ( j  e.  A ,  [_ j  /  k ]_ B ,  1 ) )
123, 7, 11cbvmpt 4385 . . . . . . . 8  |-  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )  =  ( j  e.  ZZ  |->  if ( j  e.  A ,  [_ j  /  k ]_ B ,  1 ) )
13 fprod.4 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
1413ralrimiva 2802 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  A  B  e.  CC )
155nfel1 2592 . . . . . . . . . 10  |-  F/ k
[_ j  /  k ]_ B  e.  CC
169eleq1d 2509 . . . . . . . . . 10  |-  ( k  =  j  ->  ( B  e.  CC  <->  [_ j  / 
k ]_ B  e.  CC ) )
1715, 16rspc 3070 . . . . . . . . 9  |-  ( j  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ j  /  k ]_ B  e.  CC )
)
1814, 17mpan9 469 . . . . . . . 8  |-  ( (
ph  /\  j  e.  A )  ->  [_ j  /  k ]_ B  e.  CC )
19 fveq2 5694 . . . . . . . . . . 11  |-  ( n  =  i  ->  (
f `  n )  =  ( f `  i ) )
2019csbeq1d 3298 . . . . . . . . . 10  |-  ( n  =  i  ->  [_ (
f `  n )  /  k ]_ B  =  [_ ( f `  i )  /  k ]_ B )
21 csbco 3301 . . . . . . . . . 10  |-  [_ (
f `  i )  /  j ]_ [_ j  /  k ]_ B  =  [_ ( f `  i )  /  k ]_ B
2220, 21syl6eqr 2493 . . . . . . . . 9  |-  ( n  =  i  ->  [_ (
f `  n )  /  k ]_ B  =  [_ ( f `  i )  /  j ]_ [_ j  /  k ]_ B )
2322cbvmptv 4386 . . . . . . . 8  |-  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ B
)  =  ( i  e.  NN  |->  [_ (
f `  i )  /  j ]_ [_ j  /  k ]_ B
)
2412, 18, 23prodmo 27452 . . . . . . 7  |-  ( ph  ->  E* x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )
25 fprod.2 . . . . . . . . 9  |-  ( ph  ->  M  e.  NN )
26 fprod.3 . . . . . . . . . . . 12  |-  ( ph  ->  F : ( 1 ... M ) -1-1-onto-> A )
27 f1of 5644 . . . . . . . . . . . 12  |-  ( F : ( 1 ... M ) -1-1-onto-> A  ->  F :
( 1 ... M
) --> A )
2826, 27syl 16 . . . . . . . . . . 11  |-  ( ph  ->  F : ( 1 ... M ) --> A )
29 ovex 6119 . . . . . . . . . . 11  |-  ( 1 ... M )  e. 
_V
30 fex 5953 . . . . . . . . . . 11  |-  ( ( F : ( 1 ... M ) --> A  /\  ( 1 ... M )  e.  _V )  ->  F  e.  _V )
3128, 29, 30sylancl 662 . . . . . . . . . 10  |-  ( ph  ->  F  e.  _V )
32 nnuz 10899 . . . . . . . . . . . . 13  |-  NN  =  ( ZZ>= `  1 )
3325, 32syl6eleq 2533 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  ( ZZ>= ` 
1 ) )
34 fprod.5 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  ( G `  n )  =  C )
35 elfznn 11481 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( 1 ... M )  ->  n  e.  NN )
3635adantl 466 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  n  e.  NN )
37 fvex 5704 . . . . . . . . . . . . . . . . 17  |-  ( G `
 n )  e. 
_V
3834, 37syl6eqelr 2532 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  C  e.  _V )
39 eqid 2443 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN  |->  C )  =  ( n  e.  NN  |->  C )
4039fvmpt2 5784 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  NN  /\  C  e.  _V )  ->  ( ( n  e.  NN  |->  C ) `  n )  =  C )
4136, 38, 40syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  (
( n  e.  NN  |->  C ) `  n
)  =  C )
4234, 41eqtr4d 2478 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  ( G `  n )  =  ( ( n  e.  NN  |->  C ) `
 n ) )
4342ralrimiva 2802 . . . . . . . . . . . . 13  |-  ( ph  ->  A. n  e.  ( 1 ... M ) ( G `  n
)  =  ( ( n  e.  NN  |->  C ) `  n ) )
44 nffvmpt1 5702 . . . . . . . . . . . . . . 15  |-  F/_ n
( ( n  e.  NN  |->  C ) `  k )
4544nfeq2 2593 . . . . . . . . . . . . . 14  |-  F/ n
( G `  k
)  =  ( ( n  e.  NN  |->  C ) `  k )
46 fveq2 5694 . . . . . . . . . . . . . . 15  |-  ( n  =  k  ->  ( G `  n )  =  ( G `  k ) )
47 fveq2 5694 . . . . . . . . . . . . . . 15  |-  ( n  =  k  ->  (
( n  e.  NN  |->  C ) `  n
)  =  ( ( n  e.  NN  |->  C ) `  k ) )
4846, 47eqeq12d 2457 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  (
( G `  n
)  =  ( ( n  e.  NN  |->  C ) `  n )  <-> 
( G `  k
)  =  ( ( n  e.  NN  |->  C ) `  k ) ) )
4945, 48rspc 3070 . . . . . . . . . . . . 13  |-  ( k  e.  ( 1 ... M )  ->  ( A. n  e.  (
1 ... M ) ( G `  n )  =  ( ( n  e.  NN  |->  C ) `
 n )  -> 
( G `  k
)  =  ( ( n  e.  NN  |->  C ) `  k ) ) )
5043, 49mpan9 469 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  ( G `  k )  =  ( ( n  e.  NN  |->  C ) `
 k ) )
5133, 50seqfveq 11833 . . . . . . . . . . 11  |-  ( ph  ->  (  seq 1 (  x.  ,  G ) `
 M )  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  C ) ) `  M ) )
5226, 51jca 532 . . . . . . . . . 10  |-  ( ph  ->  ( F : ( 1 ... M ) -1-1-onto-> A  /\  (  seq 1
(  x.  ,  G
) `  M )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  C ) ) `  M
) ) )
53 f1oeq1 5635 . . . . . . . . . . . 12  |-  ( f  =  F  ->  (
f : ( 1 ... M ) -1-1-onto-> A  <->  F :
( 1 ... M
)
-1-1-onto-> A ) )
54 fveq1 5693 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  F  ->  (
f `  n )  =  ( F `  n ) )
5554csbeq1d 3298 . . . . . . . . . . . . . . . . 17  |-  ( f  =  F  ->  [_ (
f `  n )  /  k ]_ B  =  [_ ( F `  n )  /  k ]_ B )
56 fvex 5704 . . . . . . . . . . . . . . . . . 18  |-  ( F `
 n )  e. 
_V
57 nfcv 2582 . . . . . . . . . . . . . . . . . 18  |-  F/_ k C
58 fprod.1 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  ( F `  n )  ->  B  =  C )
5956, 57, 58csbief 3316 . . . . . . . . . . . . . . . . 17  |-  [_ ( F `  n )  /  k ]_ B  =  C
6055, 59syl6eq 2491 . . . . . . . . . . . . . . . 16  |-  ( f  =  F  ->  [_ (
f `  n )  /  k ]_ B  =  C )
6160mpteq2dv 4382 . . . . . . . . . . . . . . 15  |-  ( f  =  F  ->  (
n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B )  =  ( n  e.  NN  |->  C ) )
6261seqeq3d 11817 . . . . . . . . . . . . . 14  |-  ( f  =  F  ->  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) )  =  seq 1 (  x.  ,  ( n  e.  NN  |->  C ) ) )
6362fveq1d 5696 . . . . . . . . . . . . 13  |-  ( f  =  F  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  M )  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  C ) ) `
 M ) )
6463eqeq2d 2454 . . . . . . . . . . . 12  |-  ( f  =  F  ->  (
(  seq 1 (  x.  ,  G ) `  M )  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  M )  <->  (  seq 1 (  x.  ,  G ) `  M
)  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  C ) ) `  M ) ) )
6553, 64anbi12d 710 . . . . . . . . . . 11  |-  ( f  =  F  ->  (
( f : ( 1 ... M ) -1-1-onto-> A  /\  (  seq 1
(  x.  ,  G
) `  M )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  M ) )  <->  ( F : ( 1 ... M ) -1-1-onto-> A  /\  (  seq 1 (  x.  ,  G ) `  M
)  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  C ) ) `  M ) ) ) )
6665spcegv 3061 . . . . . . . . . 10  |-  ( F  e.  _V  ->  (
( F : ( 1 ... M ) -1-1-onto-> A  /\  (  seq 1
(  x.  ,  G
) `  M )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  C ) ) `  M
) )  ->  E. f
( f : ( 1 ... M ) -1-1-onto-> A  /\  (  seq 1
(  x.  ,  G
) `  M )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  M ) ) ) )
6731, 52, 66sylc 60 . . . . . . . . 9  |-  ( ph  ->  E. f ( f : ( 1 ... M ) -1-1-onto-> A  /\  (  seq 1 (  x.  ,  G ) `  M
)  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  M ) ) )
68 oveq2 6102 . . . . . . . . . . . . 13  |-  ( m  =  M  ->  (
1 ... m )  =  ( 1 ... M
) )
69 f1oeq2 5636 . . . . . . . . . . . . 13  |-  ( ( 1 ... m )  =  ( 1 ... M )  ->  (
f : ( 1 ... m ) -1-1-onto-> A  <->  f :
( 1 ... M
)
-1-1-onto-> A ) )
7068, 69syl 16 . . . . . . . . . . . 12  |-  ( m  =  M  ->  (
f : ( 1 ... m ) -1-1-onto-> A  <->  f :
( 1 ... M
)
-1-1-onto-> A ) )
71 fveq2 5694 . . . . . . . . . . . . 13  |-  ( m  =  M  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m )  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  M ) )
7271eqeq2d 2454 . . . . . . . . . . . 12  |-  ( m  =  M  ->  (
(  seq 1 (  x.  ,  G ) `  M )  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m )  <->  (  seq 1 (  x.  ,  G ) `  M
)  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  M ) ) )
7370, 72anbi12d 710 . . . . . . . . . . 11  |-  ( m  =  M  ->  (
( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq 1
(  x.  ,  G
) `  M )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) )  <->  ( f : ( 1 ... M ) -1-1-onto-> A  /\  (  seq 1 (  x.  ,  G ) `  M
)  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  M ) ) ) )
7473exbidv 1680 . . . . . . . . . 10  |-  ( m  =  M  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  (  seq 1
(  x.  ,  G
) `  M )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) )  <->  E. f
( f : ( 1 ... M ) -1-1-onto-> A  /\  (  seq 1
(  x.  ,  G
) `  M )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  M ) ) ) )
7574rspcev 3076 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  E. f ( f : ( 1 ... M
)
-1-1-onto-> A  /\  (  seq 1
(  x.  ,  G
) `  M )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  M ) ) )  ->  E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  (  seq 1
(  x.  ,  G
) `  M )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )
7625, 67, 75syl2anc 661 . . . . . . . 8  |-  ( ph  ->  E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  (  seq 1
(  x.  ,  G
) `  M )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )
7776olcd 393 . . . . . . 7  |-  ( ph  ->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  (  seq 1 (  x.  ,  G ) `  M
) )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq 1
(  x.  ,  G
) `  M )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )
78 breq2 4299 . . . . . . . . . . . . . 14  |-  ( x  =  (  seq 1
(  x.  ,  G
) `  M )  ->  (  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x  <->  seq m
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  (  seq 1 (  x.  ,  G ) `  M
) ) )
79783anbi3d 1295 . . . . . . . . . . . . 13  |-  ( x  =  (  seq 1
(  x.  ,  G
) `  M )  ->  ( ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  <-> 
( A  C_  ( ZZ>=
`  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  (  seq 1 (  x.  ,  G ) `  M
) ) ) )
8079rexbidv 2739 . . . . . . . . . . . 12  |-  ( x  =  (  seq 1
(  x.  ,  G
) `  M )  ->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  <->  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  (  seq 1 (  x.  ,  G ) `  M
) ) ) )
81 eqeq1 2449 . . . . . . . . . . . . . . 15  |-  ( x  =  (  seq 1
(  x.  ,  G
) `  M )  ->  ( x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m )  <->  (  seq 1 (  x.  ,  G ) `  M
)  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )
8281anbi2d 703 . . . . . . . . . . . . . 14  |-  ( x  =  (  seq 1
(  x.  ,  G
) `  M )  ->  ( ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) )  <->  ( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq 1 (  x.  ,  G ) `  M
)  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )
8382exbidv 1680 . . . . . . . . . . . . 13  |-  ( x  =  (  seq 1
(  x.  ,  G
) `  M )  ->  ( E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) )  <->  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq 1
(  x.  ,  G
) `  M )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )
8483rexbidv 2739 . . . . . . . . . . . 12  |-  ( x  =  (  seq 1
(  x.  ,  G
) `  M )  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) )  <->  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq 1 (  x.  ,  G ) `  M )  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) ) ) )
8580, 84orbi12d 709 . . . . . . . . . . 11  |-  ( x  =  (  seq 1
(  x.  ,  G
) `  M )  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  <-> 
( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  (  seq 1 (  x.  ,  G ) `  M
) )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq 1
(  x.  ,  G
) `  M )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) ) )
8685moi2 3143 . . . . . . . . . 10  |-  ( ( ( (  seq 1
(  x.  ,  G
) `  M )  e.  _V  /\  E* x
( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )  /\  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  /\  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  (  seq 1 (  x.  ,  G ) `  M
) )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq 1
(  x.  ,  G
) `  M )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) ) )  ->  x  =  (  seq 1
(  x.  ,  G
) `  M )
)
872, 86mpanl1 680 . . . . . . . . 9  |-  ( ( E* x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  /\  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  /\  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  (  seq 1 (  x.  ,  G ) `  M
) )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq 1
(  x.  ,  G
) `  M )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) ) )  ->  x  =  (  seq 1
(  x.  ,  G
) `  M )
)
8887ancom2s 800 . . . . . . . 8  |-  ( ( E* x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  /\  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  (  seq 1 (  x.  ,  G ) `  M
) )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq 1
(  x.  ,  G
) `  M )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  /\  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) ) )  ->  x  =  (  seq 1
(  x.  ,  G
) `  M )
)
8988expr 615 . . . . . . 7  |-  ( ( E* x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  /\  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  (  seq 1 (  x.  ,  G ) `  M
) )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq 1
(  x.  ,  G
) `  M )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  ->  x  =  (  seq 1 (  x.  ,  G ) `  M ) ) )
9024, 77, 89syl2anc 661 . . . . . 6  |-  ( ph  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  ->  x  =  (  seq 1 (  x.  ,  G ) `  M ) ) )
9177, 85syl5ibrcom 222 . . . . . 6  |-  ( ph  ->  ( x  =  (  seq 1 (  x.  ,  G ) `  M )  ->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) ) )
9290, 91impbid 191 . . . . 5  |-  ( ph  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  <-> 
x  =  (  seq 1 (  x.  ,  G ) `  M
) ) )
9392adantr 465 . . . 4  |-  ( (
ph  /\  (  seq 1 (  x.  ,  G ) `  M
)  e.  _V )  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  <-> 
x  =  (  seq 1 (  x.  ,  G ) `  M
) ) )
9493iota5 5404 . . 3  |-  ( (
ph  /\  (  seq 1 (  x.  ,  G ) `  M
)  e.  _V )  ->  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )  =  (  seq 1 (  x.  ,  G ) `  M
) )
952, 94mpan2 671 . 2  |-  ( ph  ->  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )  =  (  seq 1 (  x.  ,  G ) `  M
) )
961, 95syl5eq 2487 1  |-  ( ph  ->  prod_ k  e.  A  B  =  (  seq 1 (  x.  ,  G ) `  M
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369   E.wex 1586    e. wcel 1756   E*wmo 2254    =/= wne 2609   A.wral 2718   E.wrex 2719   _Vcvv 2975   [_csb 3291    C_ wss 3331   ifcif 3794   class class class wbr 4295    e. cmpt 4353   iotacio 5382   -->wf 5417   -1-1-onto->wf1o 5420   ` cfv 5421  (class class class)co 6094   CCcc 9283   0cc0 9285   1c1 9286    x. cmul 9290   NNcn 10325   ZZcz 10649   ZZ>=cuz 10864   ...cfz 11440    seqcseq 11809    ~~> cli 12965   prod_cprod 27421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4406  ax-sep 4416  ax-nul 4424  ax-pow 4473  ax-pr 4534  ax-un 6375  ax-inf2 7850  ax-cnex 9341  ax-resscn 9342  ax-1cn 9343  ax-icn 9344  ax-addcl 9345  ax-addrcl 9346  ax-mulcl 9347  ax-mulrcl 9348  ax-mulcom 9349  ax-addass 9350  ax-mulass 9351  ax-distr 9352  ax-i2m1 9353  ax-1ne0 9354  ax-1rid 9355  ax-rnegex 9356  ax-rrecex 9357  ax-cnre 9358  ax-pre-lttri 9359  ax-pre-lttrn 9360  ax-pre-ltadd 9361  ax-pre-mulgt0 9362  ax-pre-sup 9363
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2571  df-ne 2611  df-nel 2612  df-ral 2723  df-rex 2724  df-reu 2725  df-rmo 2726  df-rab 2727  df-v 2977  df-sbc 3190  df-csb 3292  df-dif 3334  df-un 3336  df-in 3338  df-ss 3345  df-pss 3347  df-nul 3641  df-if 3795  df-pw 3865  df-sn 3881  df-pr 3883  df-tp 3885  df-op 3887  df-uni 4095  df-int 4132  df-iun 4176  df-br 4296  df-opab 4354  df-mpt 4355  df-tr 4389  df-eprel 4635  df-id 4639  df-po 4644  df-so 4645  df-fr 4682  df-se 4683  df-we 4684  df-ord 4725  df-on 4726  df-lim 4727  df-suc 4728  df-xp 4849  df-rel 4850  df-cnv 4851  df-co 4852  df-dm 4853  df-rn 4854  df-res 4855  df-ima 4856  df-iota 5384  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-isom 5430  df-riota 6055  df-ov 6097  df-oprab 6098  df-mpt2 6099  df-om 6480  df-1st 6580  df-2nd 6581  df-recs 6835  df-rdg 6869  df-1o 6923  df-oadd 6927  df-er 7104  df-en 7314  df-dom 7315  df-sdom 7316  df-fin 7317  df-sup 7694  df-oi 7727  df-card 8112  df-pnf 9423  df-mnf 9424  df-xr 9425  df-ltxr 9426  df-le 9427  df-sub 9600  df-neg 9601  df-div 9997  df-nn 10326  df-2 10383  df-3 10384  df-n0 10583  df-z 10650  df-uz 10865  df-rp 10995  df-fz 11441  df-fzo 11552  df-seq 11810  df-exp 11869  df-hash 12107  df-cj 12591  df-re 12592  df-im 12593  df-sqr 12727  df-abs 12728  df-clim 12969  df-prod 27422
This theorem is referenced by:  prod1  27460  fprodf1o  27462  fprodser  27465  fprodcl2lem  27466  fprodmul  27474  fproddiv  27475  prodsn  27476  fprodconst  27492  fprodn0  27493
  Copyright terms: Public domain W3C validator