Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fprod Structured version   Unicode version

Theorem fprod 29000
Description: The value of a product over a nonempty finite set. (Contributed by Scott Fenton, 6-Dec-2017.)
Hypotheses
Ref Expression
fprod.1  |-  ( k  =  ( F `  n )  ->  B  =  C )
fprod.2  |-  ( ph  ->  M  e.  NN )
fprod.3  |-  ( ph  ->  F : ( 1 ... M ) -1-1-onto-> A )
fprod.4  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
fprod.5  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  ( G `  n )  =  C )
Assertion
Ref Expression
fprod  |-  ( ph  ->  prod_ k  e.  A  B  =  (  seq 1 (  x.  ,  G ) `  M
) )
Distinct variable groups:    A, k, n    B, n    C, k   
k, F, n    k, G, n    ph, k    k, M, n    ph, n
Allowed substitution hints:    B( k)    C( n)

Proof of Theorem fprod
Dummy variables  f 
i  j  m  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-prod 28965 . 2  |-  prod_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )
2 fvex 5882 . . 3  |-  (  seq 1 (  x.  ,  G ) `  M
)  e.  _V
3 nfcv 2629 . . . . . . . . 9  |-  F/_ j if ( k  e.  A ,  B ,  1 )
4 nfv 1683 . . . . . . . . . 10  |-  F/ k  j  e.  A
5 nfcsb1v 3456 . . . . . . . . . 10  |-  F/_ k [_ j  /  k ]_ B
6 nfcv 2629 . . . . . . . . . 10  |-  F/_ k
1
74, 5, 6nfif 3974 . . . . . . . . 9  |-  F/_ k if ( j  e.  A ,  [_ j  /  k ]_ B ,  1 )
8 eleq1 2539 . . . . . . . . . 10  |-  ( k  =  j  ->  (
k  e.  A  <->  j  e.  A ) )
9 csbeq1a 3449 . . . . . . . . . 10  |-  ( k  =  j  ->  B  =  [_ j  /  k ]_ B )
10 eqidd 2468 . . . . . . . . . 10  |-  ( k  =  j  ->  1  =  1 )
118, 9, 10ifbieq12d 3972 . . . . . . . . 9  |-  ( k  =  j  ->  if ( k  e.  A ,  B ,  1 )  =  if ( j  e.  A ,  [_ j  /  k ]_ B ,  1 ) )
123, 7, 11cbvmpt 4543 . . . . . . . 8  |-  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )  =  ( j  e.  ZZ  |->  if ( j  e.  A ,  [_ j  /  k ]_ B ,  1 ) )
13 fprod.4 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
1413ralrimiva 2881 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  A  B  e.  CC )
155nfel1 2645 . . . . . . . . . 10  |-  F/ k
[_ j  /  k ]_ B  e.  CC
169eleq1d 2536 . . . . . . . . . 10  |-  ( k  =  j  ->  ( B  e.  CC  <->  [_ j  / 
k ]_ B  e.  CC ) )
1715, 16rspc 3213 . . . . . . . . 9  |-  ( j  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ j  /  k ]_ B  e.  CC )
)
1814, 17mpan9 469 . . . . . . . 8  |-  ( (
ph  /\  j  e.  A )  ->  [_ j  /  k ]_ B  e.  CC )
19 fveq2 5872 . . . . . . . . . . 11  |-  ( n  =  i  ->  (
f `  n )  =  ( f `  i ) )
2019csbeq1d 3447 . . . . . . . . . 10  |-  ( n  =  i  ->  [_ (
f `  n )  /  k ]_ B  =  [_ ( f `  i )  /  k ]_ B )
21 csbco 3450 . . . . . . . . . 10  |-  [_ (
f `  i )  /  j ]_ [_ j  /  k ]_ B  =  [_ ( f `  i )  /  k ]_ B
2220, 21syl6eqr 2526 . . . . . . . . 9  |-  ( n  =  i  ->  [_ (
f `  n )  /  k ]_ B  =  [_ ( f `  i )  /  j ]_ [_ j  /  k ]_ B )
2322cbvmptv 4544 . . . . . . . 8  |-  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ B
)  =  ( i  e.  NN  |->  [_ (
f `  i )  /  j ]_ [_ j  /  k ]_ B
)
2412, 18, 23prodmo 28995 . . . . . . 7  |-  ( ph  ->  E* x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )
25 fprod.2 . . . . . . . . 9  |-  ( ph  ->  M  e.  NN )
26 fprod.3 . . . . . . . . . . . 12  |-  ( ph  ->  F : ( 1 ... M ) -1-1-onto-> A )
27 f1of 5822 . . . . . . . . . . . 12  |-  ( F : ( 1 ... M ) -1-1-onto-> A  ->  F :
( 1 ... M
) --> A )
2826, 27syl 16 . . . . . . . . . . 11  |-  ( ph  ->  F : ( 1 ... M ) --> A )
29 ovex 6320 . . . . . . . . . . 11  |-  ( 1 ... M )  e. 
_V
30 fex 6144 . . . . . . . . . . 11  |-  ( ( F : ( 1 ... M ) --> A  /\  ( 1 ... M )  e.  _V )  ->  F  e.  _V )
3128, 29, 30sylancl 662 . . . . . . . . . 10  |-  ( ph  ->  F  e.  _V )
32 nnuz 11129 . . . . . . . . . . . . 13  |-  NN  =  ( ZZ>= `  1 )
3325, 32syl6eleq 2565 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  ( ZZ>= ` 
1 ) )
34 fprod.5 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  ( G `  n )  =  C )
35 elfznn 11726 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( 1 ... M )  ->  n  e.  NN )
3635adantl 466 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  n  e.  NN )
37 fvex 5882 . . . . . . . . . . . . . . . . 17  |-  ( G `
 n )  e. 
_V
3834, 37syl6eqelr 2564 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  C  e.  _V )
39 eqid 2467 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN  |->  C )  =  ( n  e.  NN  |->  C )
4039fvmpt2 5964 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  NN  /\  C  e.  _V )  ->  ( ( n  e.  NN  |->  C ) `  n )  =  C )
4136, 38, 40syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  (
( n  e.  NN  |->  C ) `  n
)  =  C )
4234, 41eqtr4d 2511 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  ( G `  n )  =  ( ( n  e.  NN  |->  C ) `
 n ) )
4342ralrimiva 2881 . . . . . . . . . . . . 13  |-  ( ph  ->  A. n  e.  ( 1 ... M ) ( G `  n
)  =  ( ( n  e.  NN  |->  C ) `  n ) )
44 nffvmpt1 5880 . . . . . . . . . . . . . . 15  |-  F/_ n
( ( n  e.  NN  |->  C ) `  k )
4544nfeq2 2646 . . . . . . . . . . . . . 14  |-  F/ n
( G `  k
)  =  ( ( n  e.  NN  |->  C ) `  k )
46 fveq2 5872 . . . . . . . . . . . . . . 15  |-  ( n  =  k  ->  ( G `  n )  =  ( G `  k ) )
47 fveq2 5872 . . . . . . . . . . . . . . 15  |-  ( n  =  k  ->  (
( n  e.  NN  |->  C ) `  n
)  =  ( ( n  e.  NN  |->  C ) `  k ) )
4846, 47eqeq12d 2489 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  (
( G `  n
)  =  ( ( n  e.  NN  |->  C ) `  n )  <-> 
( G `  k
)  =  ( ( n  e.  NN  |->  C ) `  k ) ) )
4945, 48rspc 3213 . . . . . . . . . . . . 13  |-  ( k  e.  ( 1 ... M )  ->  ( A. n  e.  (
1 ... M ) ( G `  n )  =  ( ( n  e.  NN  |->  C ) `
 n )  -> 
( G `  k
)  =  ( ( n  e.  NN  |->  C ) `  k ) ) )
5043, 49mpan9 469 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  ( G `  k )  =  ( ( n  e.  NN  |->  C ) `
 k ) )
5133, 50seqfveq 12111 . . . . . . . . . . 11  |-  ( ph  ->  (  seq 1 (  x.  ,  G ) `
 M )  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  C ) ) `  M ) )
5226, 51jca 532 . . . . . . . . . 10  |-  ( ph  ->  ( F : ( 1 ... M ) -1-1-onto-> A  /\  (  seq 1
(  x.  ,  G
) `  M )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  C ) ) `  M
) ) )
53 f1oeq1 5813 . . . . . . . . . . . 12  |-  ( f  =  F  ->  (
f : ( 1 ... M ) -1-1-onto-> A  <->  F :
( 1 ... M
)
-1-1-onto-> A ) )
54 fveq1 5871 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  F  ->  (
f `  n )  =  ( F `  n ) )
5554csbeq1d 3447 . . . . . . . . . . . . . . . . 17  |-  ( f  =  F  ->  [_ (
f `  n )  /  k ]_ B  =  [_ ( F `  n )  /  k ]_ B )
56 fvex 5882 . . . . . . . . . . . . . . . . . 18  |-  ( F `
 n )  e. 
_V
57 nfcv 2629 . . . . . . . . . . . . . . . . . 18  |-  F/_ k C
58 fprod.1 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  ( F `  n )  ->  B  =  C )
5956, 57, 58csbief 3465 . . . . . . . . . . . . . . . . 17  |-  [_ ( F `  n )  /  k ]_ B  =  C
6055, 59syl6eq 2524 . . . . . . . . . . . . . . . 16  |-  ( f  =  F  ->  [_ (
f `  n )  /  k ]_ B  =  C )
6160mpteq2dv 4540 . . . . . . . . . . . . . . 15  |-  ( f  =  F  ->  (
n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B )  =  ( n  e.  NN  |->  C ) )
6261seqeq3d 12095 . . . . . . . . . . . . . 14  |-  ( f  =  F  ->  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) )  =  seq 1 (  x.  ,  ( n  e.  NN  |->  C ) ) )
6362fveq1d 5874 . . . . . . . . . . . . 13  |-  ( f  =  F  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  M )  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  C ) ) `
 M ) )
6463eqeq2d 2481 . . . . . . . . . . . 12  |-  ( f  =  F  ->  (
(  seq 1 (  x.  ,  G ) `  M )  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  M )  <->  (  seq 1 (  x.  ,  G ) `  M
)  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  C ) ) `  M ) ) )
6553, 64anbi12d 710 . . . . . . . . . . 11  |-  ( f  =  F  ->  (
( f : ( 1 ... M ) -1-1-onto-> A  /\  (  seq 1
(  x.  ,  G
) `  M )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  M ) )  <->  ( F : ( 1 ... M ) -1-1-onto-> A  /\  (  seq 1 (  x.  ,  G ) `  M
)  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  C ) ) `  M ) ) ) )
6665spcegv 3204 . . . . . . . . . 10  |-  ( F  e.  _V  ->  (
( F : ( 1 ... M ) -1-1-onto-> A  /\  (  seq 1
(  x.  ,  G
) `  M )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  C ) ) `  M
) )  ->  E. f
( f : ( 1 ... M ) -1-1-onto-> A  /\  (  seq 1
(  x.  ,  G
) `  M )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  M ) ) ) )
6731, 52, 66sylc 60 . . . . . . . . 9  |-  ( ph  ->  E. f ( f : ( 1 ... M ) -1-1-onto-> A  /\  (  seq 1 (  x.  ,  G ) `  M
)  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  M ) ) )
68 oveq2 6303 . . . . . . . . . . . . 13  |-  ( m  =  M  ->  (
1 ... m )  =  ( 1 ... M
) )
69 f1oeq2 5814 . . . . . . . . . . . . 13  |-  ( ( 1 ... m )  =  ( 1 ... M )  ->  (
f : ( 1 ... m ) -1-1-onto-> A  <->  f :
( 1 ... M
)
-1-1-onto-> A ) )
7068, 69syl 16 . . . . . . . . . . . 12  |-  ( m  =  M  ->  (
f : ( 1 ... m ) -1-1-onto-> A  <->  f :
( 1 ... M
)
-1-1-onto-> A ) )
71 fveq2 5872 . . . . . . . . . . . . 13  |-  ( m  =  M  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m )  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  M ) )
7271eqeq2d 2481 . . . . . . . . . . . 12  |-  ( m  =  M  ->  (
(  seq 1 (  x.  ,  G ) `  M )  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m )  <->  (  seq 1 (  x.  ,  G ) `  M
)  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  M ) ) )
7370, 72anbi12d 710 . . . . . . . . . . 11  |-  ( m  =  M  ->  (
( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq 1
(  x.  ,  G
) `  M )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) )  <->  ( f : ( 1 ... M ) -1-1-onto-> A  /\  (  seq 1 (  x.  ,  G ) `  M
)  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  M ) ) ) )
7473exbidv 1690 . . . . . . . . . 10  |-  ( m  =  M  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  (  seq 1
(  x.  ,  G
) `  M )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) )  <->  E. f
( f : ( 1 ... M ) -1-1-onto-> A  /\  (  seq 1
(  x.  ,  G
) `  M )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  M ) ) ) )
7574rspcev 3219 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  E. f ( f : ( 1 ... M
)
-1-1-onto-> A  /\  (  seq 1
(  x.  ,  G
) `  M )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  M ) ) )  ->  E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  (  seq 1
(  x.  ,  G
) `  M )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )
7625, 67, 75syl2anc 661 . . . . . . . 8  |-  ( ph  ->  E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  (  seq 1
(  x.  ,  G
) `  M )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )
7776olcd 393 . . . . . . 7  |-  ( ph  ->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  (  seq 1 (  x.  ,  G ) `  M
) )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq 1
(  x.  ,  G
) `  M )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )
78 breq2 4457 . . . . . . . . . . . . . 14  |-  ( x  =  (  seq 1
(  x.  ,  G
) `  M )  ->  (  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x  <->  seq m
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  (  seq 1 (  x.  ,  G ) `  M
) ) )
79783anbi3d 1305 . . . . . . . . . . . . 13  |-  ( x  =  (  seq 1
(  x.  ,  G
) `  M )  ->  ( ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  <-> 
( A  C_  ( ZZ>=
`  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  (  seq 1 (  x.  ,  G ) `  M
) ) ) )
8079rexbidv 2978 . . . . . . . . . . . 12  |-  ( x  =  (  seq 1
(  x.  ,  G
) `  M )  ->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  <->  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  (  seq 1 (  x.  ,  G ) `  M
) ) ) )
81 eqeq1 2471 . . . . . . . . . . . . . . 15  |-  ( x  =  (  seq 1
(  x.  ,  G
) `  M )  ->  ( x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m )  <->  (  seq 1 (  x.  ,  G ) `  M
)  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )
8281anbi2d 703 . . . . . . . . . . . . . 14  |-  ( x  =  (  seq 1
(  x.  ,  G
) `  M )  ->  ( ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) )  <->  ( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq 1 (  x.  ,  G ) `  M
)  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )
8382exbidv 1690 . . . . . . . . . . . . 13  |-  ( x  =  (  seq 1
(  x.  ,  G
) `  M )  ->  ( E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) )  <->  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq 1
(  x.  ,  G
) `  M )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )
8483rexbidv 2978 . . . . . . . . . . . 12  |-  ( x  =  (  seq 1
(  x.  ,  G
) `  M )  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) )  <->  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq 1 (  x.  ,  G ) `  M )  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) ) ) )
8580, 84orbi12d 709 . . . . . . . . . . 11  |-  ( x  =  (  seq 1
(  x.  ,  G
) `  M )  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  <-> 
( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  (  seq 1 (  x.  ,  G ) `  M
) )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq 1
(  x.  ,  G
) `  M )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) ) )
8685moi2 3289 . . . . . . . . . 10  |-  ( ( ( (  seq 1
(  x.  ,  G
) `  M )  e.  _V  /\  E* x
( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )  /\  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  /\  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  (  seq 1 (  x.  ,  G ) `  M
) )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq 1
(  x.  ,  G
) `  M )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) ) )  ->  x  =  (  seq 1
(  x.  ,  G
) `  M )
)
872, 86mpanl1 680 . . . . . . . . 9  |-  ( ( E* x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  /\  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  /\  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  (  seq 1 (  x.  ,  G ) `  M
) )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq 1
(  x.  ,  G
) `  M )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) ) )  ->  x  =  (  seq 1
(  x.  ,  G
) `  M )
)
8887ancom2s 800 . . . . . . . 8  |-  ( ( E* x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  /\  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  (  seq 1 (  x.  ,  G ) `  M
) )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq 1
(  x.  ,  G
) `  M )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  /\  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) ) )  ->  x  =  (  seq 1
(  x.  ,  G
) `  M )
)
8988expr 615 . . . . . . 7  |-  ( ( E* x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  /\  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  (  seq 1 (  x.  ,  G ) `  M
) )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq 1
(  x.  ,  G
) `  M )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  ->  x  =  (  seq 1 (  x.  ,  G ) `  M ) ) )
9024, 77, 89syl2anc 661 . . . . . 6  |-  ( ph  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  ->  x  =  (  seq 1 (  x.  ,  G ) `  M ) ) )
9177, 85syl5ibrcom 222 . . . . . 6  |-  ( ph  ->  ( x  =  (  seq 1 (  x.  ,  G ) `  M )  ->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) ) )
9290, 91impbid 191 . . . . 5  |-  ( ph  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  <-> 
x  =  (  seq 1 (  x.  ,  G ) `  M
) ) )
9392adantr 465 . . . 4  |-  ( (
ph  /\  (  seq 1 (  x.  ,  G ) `  M
)  e.  _V )  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  <-> 
x  =  (  seq 1 (  x.  ,  G ) `  M
) ) )
9493iota5 5577 . . 3  |-  ( (
ph  /\  (  seq 1 (  x.  ,  G ) `  M
)  e.  _V )  ->  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )  =  (  seq 1 (  x.  ,  G ) `  M
) )
952, 94mpan2 671 . 2  |-  ( ph  ->  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )  =  (  seq 1 (  x.  ,  G ) `  M
) )
961, 95syl5eq 2520 1  |-  ( ph  ->  prod_ k  e.  A  B  =  (  seq 1 (  x.  ,  G ) `  M
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1379   E.wex 1596    e. wcel 1767   E*wmo 2276    =/= wne 2662   A.wral 2817   E.wrex 2818   _Vcvv 3118   [_csb 3440    C_ wss 3481   ifcif 3945   class class class wbr 4453    |-> cmpt 4511   iotacio 5555   -->wf 5590   -1-1-onto->wf1o 5593   ` cfv 5594  (class class class)co 6295   CCcc 9502   0cc0 9504   1c1 9505    x. cmul 9509   NNcn 10548   ZZcz 10876   ZZ>=cuz 11094   ...cfz 11684    seqcseq 12087    ~~> cli 13287   prod_cprod 28964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-inf2 8070  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-se 4845  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-1o 7142  df-oadd 7146  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-sup 7913  df-oi 7947  df-card 8332  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-n0 10808  df-z 10877  df-uz 11095  df-rp 11233  df-fz 11685  df-fzo 11805  df-seq 12088  df-exp 12147  df-hash 12386  df-cj 12912  df-re 12913  df-im 12914  df-sqrt 13048  df-abs 13049  df-clim 13291  df-prod 28965
This theorem is referenced by:  prod1  29003  fprodf1o  29005  fprodser  29008  fprodcl2lem  29009  fprodmul  29017  fproddiv  29018  prodsn  29019  fprodconst  29035  fprodn0  29036
  Copyright terms: Public domain W3C validator