MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpr Structured version   Unicode version

Theorem fpr 6083
Description: A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Hypotheses
Ref Expression
fpr.1  |-  A  e. 
_V
fpr.2  |-  B  e. 
_V
fpr.3  |-  C  e. 
_V
fpr.4  |-  D  e. 
_V
Assertion
Ref Expression
fpr  |-  ( A  =/=  B  ->  { <. A ,  C >. ,  <. B ,  D >. } : { A ,  B } --> { C ,  D }
)

Proof of Theorem fpr
StepHypRef Expression
1 fpr.1 . . . . . 6  |-  A  e. 
_V
2 fpr.2 . . . . . 6  |-  B  e. 
_V
3 fpr.3 . . . . . 6  |-  C  e. 
_V
4 fpr.4 . . . . . 6  |-  D  e. 
_V
51, 2, 3, 4funpr 5648 . . . . 5  |-  ( A  =/=  B  ->  Fun  {
<. A ,  C >. , 
<. B ,  D >. } )
63, 4dmprop 5326 . . . . 5  |-  dom  { <. A ,  C >. , 
<. B ,  D >. }  =  { A ,  B }
75, 6jctir 540 . . . 4  |-  ( A  =/=  B  ->  ( Fun  { <. A ,  C >. ,  <. B ,  D >. }  /\  dom  { <. A ,  C >. , 
<. B ,  D >. }  =  { A ,  B } ) )
8 df-fn 5600 . . . 4  |-  ( {
<. A ,  C >. , 
<. B ,  D >. }  Fn  { A ,  B }  <->  ( Fun  { <. A ,  C >. , 
<. B ,  D >. }  /\  dom  { <. A ,  C >. ,  <. B ,  D >. }  =  { A ,  B }
) )
97, 8sylibr 215 . . 3  |-  ( A  =/=  B  ->  { <. A ,  C >. ,  <. B ,  D >. }  Fn  { A ,  B }
)
10 df-pr 3999 . . . . . 6  |-  { <. A ,  C >. ,  <. B ,  D >. }  =  ( { <. A ,  C >. }  u.  { <. B ,  D >. } )
1110rneqi 5076 . . . . 5  |-  ran  { <. A ,  C >. , 
<. B ,  D >. }  =  ran  ( {
<. A ,  C >. }  u.  { <. B ,  D >. } )
12 rnun 5259 . . . . 5  |-  ran  ( { <. A ,  C >. }  u.  { <. B ,  D >. } )  =  ( ran  { <. A ,  C >. }  u.  ran  { <. B ,  D >. } )
131rnsnop 5332 . . . . . . 7  |-  ran  { <. A ,  C >. }  =  { C }
142rnsnop 5332 . . . . . . 7  |-  ran  { <. B ,  D >. }  =  { D }
1513, 14uneq12i 3618 . . . . . 6  |-  ( ran 
{ <. A ,  C >. }  u.  ran  { <. B ,  D >. } )  =  ( { C }  u.  { D } )
16 df-pr 3999 . . . . . 6  |-  { C ,  D }  =  ( { C }  u.  { D } )
1715, 16eqtr4i 2454 . . . . 5  |-  ( ran 
{ <. A ,  C >. }  u.  ran  { <. B ,  D >. } )  =  { C ,  D }
1811, 12, 173eqtri 2455 . . . 4  |-  ran  { <. A ,  C >. , 
<. B ,  D >. }  =  { C ,  D }
1918eqimssi 3518 . . 3  |-  ran  { <. A ,  C >. , 
<. B ,  D >. } 
C_  { C ,  D }
209, 19jctir 540 . 2  |-  ( A  =/=  B  ->  ( { <. A ,  C >. ,  <. B ,  D >. }  Fn  { A ,  B }  /\  ran  {
<. A ,  C >. , 
<. B ,  D >. } 
C_  { C ,  D } ) )
21 df-f 5601 . 2  |-  ( {
<. A ,  C >. , 
<. B ,  D >. } : { A ,  B } --> { C ,  D }  <->  ( { <. A ,  C >. ,  <. B ,  D >. }  Fn  { A ,  B }  /\  ran  { <. A ,  C >. ,  <. B ,  D >. }  C_  { C ,  D } ) )
2220, 21sylibr 215 1  |-  ( A  =/=  B  ->  { <. A ,  C >. ,  <. B ,  D >. } : { A ,  B } --> { C ,  D }
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1868    =/= wne 2618   _Vcvv 3081    u. cun 3434    C_ wss 3436   {csn 3996   {cpr 3998   <.cop 4002   dom cdm 4849   ran crn 4850   Fun wfun 5591    Fn wfn 5592   -->wf 5593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-sep 4543  ax-nul 4551  ax-pr 4656
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-ral 2780  df-rex 2781  df-rab 2784  df-v 3083  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3910  df-sn 3997  df-pr 3999  df-op 4003  df-br 4421  df-opab 4480  df-id 4764  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-fun 5599  df-fn 5600  df-f 5601
This theorem is referenced by:  fprg  6084  1sdom  7777  axlowdimlem4  24959  wlkntrllem1  25272  wlkntrllem3  25274  coinfliprv  29308  fprb  30405  poimirlem22  31873  nnsum3primes4  38592  nnsum3primesgbe  38596
  Copyright terms: Public domain W3C validator