MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpm Structured version   Unicode version

Theorem fpm 7451
Description: A total function is a partial function. (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 31-Dec-2013.)
Hypotheses
Ref Expression
elmap.1  |-  A  e. 
_V
elmap.2  |-  B  e. 
_V
Assertion
Ref Expression
fpm  |-  ( F : A --> B  ->  F  e.  ( B  ^pm  A ) )

Proof of Theorem fpm
StepHypRef Expression
1 elmap.1 . 2  |-  A  e. 
_V
2 elmap.2 . 2  |-  B  e. 
_V
3 fpmg 7444 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  F : A --> B )  ->  F  e.  ( B  ^pm  A ) )
41, 2, 3mp3an12 1314 1  |-  ( F : A --> B  ->  F  e.  ( B  ^pm  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1767   _Vcvv 3113   -->wf 5584  (class class class)co 6284    ^pm cpm 7421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-fv 5596  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-pm 7423
This theorem is referenced by:  plycpn  22447
  Copyright terms: Public domain W3C validator