MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fovrn Structured version   Unicode version

Theorem fovrn 6382
Description: An operation's value belongs to its codomain. (Contributed by NM, 27-Aug-2006.)
Assertion
Ref Expression
fovrn  |-  ( ( F : ( R  X.  S ) --> C  /\  A  e.  R  /\  B  e.  S
)  ->  ( A F B )  e.  C
)

Proof of Theorem fovrn
StepHypRef Expression
1 opelxpi 4974 . . 3  |-  ( ( A  e.  R  /\  B  e.  S )  -> 
<. A ,  B >.  e.  ( R  X.  S
) )
2 df-ov 6237 . . . 4  |-  ( A F B )  =  ( F `  <. A ,  B >. )
3 ffvelrn 5963 . . . 4  |-  ( ( F : ( R  X.  S ) --> C  /\  <. A ,  B >.  e.  ( R  X.  S ) )  -> 
( F `  <. A ,  B >. )  e.  C )
42, 3syl5eqel 2494 . . 3  |-  ( ( F : ( R  X.  S ) --> C  /\  <. A ,  B >.  e.  ( R  X.  S ) )  -> 
( A F B )  e.  C )
51, 4sylan2 472 . 2  |-  ( ( F : ( R  X.  S ) --> C  /\  ( A  e.  R  /\  B  e.  S ) )  -> 
( A F B )  e.  C )
653impb 1193 1  |-  ( ( F : ( R  X.  S ) --> C  /\  A  e.  R  /\  B  e.  S
)  ->  ( A F B )  e.  C
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 974    e. wcel 1842   <.cop 3977    X. cxp 4940   -->wf 5521   ` cfv 5525  (class class class)co 6234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pr 4629
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-rab 2762  df-v 3060  df-sbc 3277  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-sn 3972  df-pr 3974  df-op 3978  df-uni 4191  df-br 4395  df-opab 4453  df-id 4737  df-xp 4948  df-rel 4949  df-cnv 4950  df-co 4951  df-dm 4952  df-rn 4953  df-iota 5489  df-fun 5527  df-fn 5528  df-f 5529  df-fv 5533  df-ov 6237
This theorem is referenced by:  fovrnda  6383  fovrnd  6384  ovmpt2elrn  6809  curry1f  6832  curry2f  6834  mapxpen  7641  axdc4lem  8787  axdc4uzlem  12046  imasmnd2  16173  grpsubcl  16334  imasgrp2  16401  imasring  17480  tsmsxplem1  20839  psmetcl  20995  xmetcl  21018  metcl  21019  blssm  21105  mbfi1fseqlem3  22308  mbfi1fseqlem4  22309  mbfi1fseqlem5  22310  grpocl  25496  grpodivcl  25543  clmgmOLD  25617  rngocl  25678  vccl  25737  nvmcl  25836  cvmliftphtlem  29495  isbnd3  31543  isdrngo2  31624
  Copyright terms: Public domain W3C validator