MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fovrn Structured version   Unicode version

Theorem fovrn 6427
Description: An operation's value belongs to its codomain. (Contributed by NM, 27-Aug-2006.)
Assertion
Ref Expression
fovrn  |-  ( ( F : ( R  X.  S ) --> C  /\  A  e.  R  /\  B  e.  S
)  ->  ( A F B )  e.  C
)

Proof of Theorem fovrn
StepHypRef Expression
1 opelxpi 5030 . . 3  |-  ( ( A  e.  R  /\  B  e.  S )  -> 
<. A ,  B >.  e.  ( R  X.  S
) )
2 df-ov 6285 . . . 4  |-  ( A F B )  =  ( F `  <. A ,  B >. )
3 ffvelrn 6017 . . . 4  |-  ( ( F : ( R  X.  S ) --> C  /\  <. A ,  B >.  e.  ( R  X.  S ) )  -> 
( F `  <. A ,  B >. )  e.  C )
42, 3syl5eqel 2559 . . 3  |-  ( ( F : ( R  X.  S ) --> C  /\  <. A ,  B >.  e.  ( R  X.  S ) )  -> 
( A F B )  e.  C )
51, 4sylan2 474 . 2  |-  ( ( F : ( R  X.  S ) --> C  /\  ( A  e.  R  /\  B  e.  S ) )  -> 
( A F B )  e.  C )
653impb 1192 1  |-  ( ( F : ( R  X.  S ) --> C  /\  A  e.  R  /\  B  e.  S
)  ->  ( A F B )  e.  C
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    e. wcel 1767   <.cop 4033    X. cxp 4997   -->wf 5582   ` cfv 5586  (class class class)co 6282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-fv 5594  df-ov 6285
This theorem is referenced by:  fovrnda  6428  fovrnd  6429  curry1f  6874  curry2f  6876  mapxpen  7680  axdc4lem  8831  axdc4uzlem  12055  imasmnd2  15768  grpsubcl  15916  imasgrp2  15982  imasrng  17049  tsmsxplem1  20387  psmetcl  20543  xmetcl  20566  metcl  20567  blssm  20653  mbfi1fseqlem3  21856  mbfi1fseqlem4  21857  mbfi1fseqlem5  21858  grpocl  24875  grpodivcl  24922  clmgm  24996  rngocl  25057  vccl  25116  nvmcl  25215  cvmliftphtlem  28399  isbnd3  29881  isdrngo2  29962
  Copyright terms: Public domain W3C validator