MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fores Structured version   Unicode version

Theorem fores 5804
Description: Restriction of a function. (Contributed by NM, 4-Mar-1997.)
Assertion
Ref Expression
fores  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( F  |`  A ) : A -onto-> ( F
" A ) )

Proof of Theorem fores
StepHypRef Expression
1 funres 5627 . . 3  |-  ( Fun 
F  ->  Fun  ( F  |`  A ) )
21anim1i 568 . 2  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( Fun  ( F  |`  A )  /\  A  C_ 
dom  F ) )
3 df-fn 5591 . . 3  |-  ( ( F  |`  A )  Fn  A  <->  ( Fun  ( F  |`  A )  /\  dom  ( F  |`  A )  =  A ) )
4 df-ima 5012 . . . . 5  |-  ( F
" A )  =  ran  ( F  |`  A )
54eqcomi 2480 . . . 4  |-  ran  ( F  |`  A )  =  ( F " A
)
6 df-fo 5594 . . . 4  |-  ( ( F  |`  A ) : A -onto-> ( F " A )  <->  ( ( F  |`  A )  Fn  A  /\  ran  ( F  |`  A )  =  ( F " A
) ) )
75, 6mpbiran2 917 . . 3  |-  ( ( F  |`  A ) : A -onto-> ( F " A )  <->  ( F  |`  A )  Fn  A
)
8 ssdmres 5295 . . . 4  |-  ( A 
C_  dom  F  <->  dom  ( F  |`  A )  =  A )
98anbi2i 694 . . 3  |-  ( ( Fun  ( F  |`  A )  /\  A  C_ 
dom  F )  <->  ( Fun  ( F  |`  A )  /\  dom  ( F  |`  A )  =  A ) )
103, 7, 93bitr4i 277 . 2  |-  ( ( F  |`  A ) : A -onto-> ( F " A )  <->  ( Fun  ( F  |`  A )  /\  A  C_  dom  F ) )
112, 10sylibr 212 1  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( F  |`  A ) : A -onto-> ( F
" A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    C_ wss 3476   dom cdm 4999   ran crn 5000    |` cres 5001   "cima 5002   Fun wfun 5582    Fn wfn 5583   -onto->wfo 5586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-br 4448  df-opab 4506  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-res 5011  df-ima 5012  df-fun 5590  df-fn 5591  df-fo 5594
This theorem is referenced by:  resdif  5836  f1oweALT  6768  imafi  7813  f1opwfi  7824  fodomfi2  8441  fin1a2lem7  8786  znnen  13807  conima  19720  1stcfb  19740  1stckgenlem  19817  qtoprest  19981  re2ndc  21069  uniiccdif  21750  opnmblALT  21775  mbfimaopnlem  21825  ghsubgolem  25076  ffsrn  27252  erdszelem2  28304  ivthALT  29758  lmhmfgima  30662
  Copyright terms: Public domain W3C validator