MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fopwdom Structured version   Unicode version

Theorem fopwdom 7415
Description: Covering implies injection on power sets. (Contributed by Stefan O'Rear, 6-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
fopwdom  |-  ( ( F  e.  _V  /\  F : A -onto-> B )  ->  ~P B  ~<_  ~P A )

Proof of Theorem fopwdom
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imassrn 5177 . . . . . 6  |-  ( `' F " a ) 
C_  ran  `' F
2 dfdm4 5028 . . . . . . 7  |-  dom  F  =  ran  `' F
3 fof 5617 . . . . . . . 8  |-  ( F : A -onto-> B  ->  F : A --> B )
4 fdm 5560 . . . . . . . 8  |-  ( F : A --> B  ->  dom  F  =  A )
53, 4syl 16 . . . . . . 7  |-  ( F : A -onto-> B  ->  dom  F  =  A )
62, 5syl5eqr 2487 . . . . . 6  |-  ( F : A -onto-> B  ->  ran  `' F  =  A
)
71, 6syl5sseq 3401 . . . . 5  |-  ( F : A -onto-> B  -> 
( `' F "
a )  C_  A
)
87adantl 463 . . . 4  |-  ( ( F  e.  _V  /\  F : A -onto-> B )  ->  ( `' F " a )  C_  A
)
9 cnvexg 6523 . . . . . 6  |-  ( F  e.  _V  ->  `' F  e.  _V )
109adantr 462 . . . . 5  |-  ( ( F  e.  _V  /\  F : A -onto-> B )  ->  `' F  e. 
_V )
11 imaexg 6514 . . . . 5  |-  ( `' F  e.  _V  ->  ( `' F " a )  e.  _V )
12 elpwg 3865 . . . . 5  |-  ( ( `' F " a )  e.  _V  ->  (
( `' F "
a )  e.  ~P A 
<->  ( `' F "
a )  C_  A
) )
1310, 11, 123syl 20 . . . 4  |-  ( ( F  e.  _V  /\  F : A -onto-> B )  ->  ( ( `' F " a )  e.  ~P A  <->  ( `' F " a )  C_  A ) )
148, 13mpbird 232 . . 3  |-  ( ( F  e.  _V  /\  F : A -onto-> B )  ->  ( `' F " a )  e.  ~P A )
1514a1d 25 . 2  |-  ( ( F  e.  _V  /\  F : A -onto-> B )  ->  ( a  e. 
~P B  ->  ( `' F " a )  e.  ~P A ) )
16 imaeq2 5162 . . . . . . 7  |-  ( ( `' F " a )  =  ( `' F " b )  ->  ( F " ( `' F " a ) )  =  ( F " ( `' F " b ) ) )
1716adantl 463 . . . . . 6  |-  ( ( ( ( F  e. 
_V  /\  F : A -onto-> B )  /\  (
a  e.  ~P B  /\  b  e.  ~P B ) )  /\  ( `' F " a )  =  ( `' F " b ) )  -> 
( F " ( `' F " a ) )  =  ( F
" ( `' F " b ) ) )
18 simpllr 753 . . . . . . 7  |-  ( ( ( ( F  e. 
_V  /\  F : A -onto-> B )  /\  (
a  e.  ~P B  /\  b  e.  ~P B ) )  /\  ( `' F " a )  =  ( `' F " b ) )  ->  F : A -onto-> B )
19 simplrl 754 . . . . . . . 8  |-  ( ( ( ( F  e. 
_V  /\  F : A -onto-> B )  /\  (
a  e.  ~P B  /\  b  e.  ~P B ) )  /\  ( `' F " a )  =  ( `' F " b ) )  -> 
a  e.  ~P B
)
2019elpwid 3867 . . . . . . 7  |-  ( ( ( ( F  e. 
_V  /\  F : A -onto-> B )  /\  (
a  e.  ~P B  /\  b  e.  ~P B ) )  /\  ( `' F " a )  =  ( `' F " b ) )  -> 
a  C_  B )
21 foimacnv 5655 . . . . . . 7  |-  ( ( F : A -onto-> B  /\  a  C_  B )  ->  ( F "
( `' F "
a ) )  =  a )
2218, 20, 21syl2anc 656 . . . . . 6  |-  ( ( ( ( F  e. 
_V  /\  F : A -onto-> B )  /\  (
a  e.  ~P B  /\  b  e.  ~P B ) )  /\  ( `' F " a )  =  ( `' F " b ) )  -> 
( F " ( `' F " a ) )  =  a )
23 simplrr 755 . . . . . . . 8  |-  ( ( ( ( F  e. 
_V  /\  F : A -onto-> B )  /\  (
a  e.  ~P B  /\  b  e.  ~P B ) )  /\  ( `' F " a )  =  ( `' F " b ) )  -> 
b  e.  ~P B
)
2423elpwid 3867 . . . . . . 7  |-  ( ( ( ( F  e. 
_V  /\  F : A -onto-> B )  /\  (
a  e.  ~P B  /\  b  e.  ~P B ) )  /\  ( `' F " a )  =  ( `' F " b ) )  -> 
b  C_  B )
25 foimacnv 5655 . . . . . . 7  |-  ( ( F : A -onto-> B  /\  b  C_  B )  ->  ( F "
( `' F "
b ) )  =  b )
2618, 24, 25syl2anc 656 . . . . . 6  |-  ( ( ( ( F  e. 
_V  /\  F : A -onto-> B )  /\  (
a  e.  ~P B  /\  b  e.  ~P B ) )  /\  ( `' F " a )  =  ( `' F " b ) )  -> 
( F " ( `' F " b ) )  =  b )
2717, 22, 263eqtr3d 2481 . . . . 5  |-  ( ( ( ( F  e. 
_V  /\  F : A -onto-> B )  /\  (
a  e.  ~P B  /\  b  e.  ~P B ) )  /\  ( `' F " a )  =  ( `' F " b ) )  -> 
a  =  b )
2827ex 434 . . . 4  |-  ( ( ( F  e.  _V  /\  F : A -onto-> B
)  /\  ( a  e.  ~P B  /\  b  e.  ~P B ) )  ->  ( ( `' F " a )  =  ( `' F " b )  ->  a  =  b ) )
29 imaeq2 5162 . . . 4  |-  ( a  =  b  ->  ( `' F " a )  =  ( `' F " b ) )
3028, 29impbid1 203 . . 3  |-  ( ( ( F  e.  _V  /\  F : A -onto-> B
)  /\  ( a  e.  ~P B  /\  b  e.  ~P B ) )  ->  ( ( `' F " a )  =  ( `' F " b )  <->  a  =  b ) )
3130ex 434 . 2  |-  ( ( F  e.  _V  /\  F : A -onto-> B )  ->  ( ( a  e.  ~P B  /\  b  e.  ~P B
)  ->  ( ( `' F " a )  =  ( `' F " b )  <->  a  =  b ) ) )
32 rnexg 6509 . . . . 5  |-  ( F  e.  _V  ->  ran  F  e.  _V )
33 forn 5620 . . . . . 6  |-  ( F : A -onto-> B  ->  ran  F  =  B )
3433eleq1d 2507 . . . . 5  |-  ( F : A -onto-> B  -> 
( ran  F  e.  _V 
<->  B  e.  _V )
)
3532, 34syl5ibcom 220 . . . 4  |-  ( F  e.  _V  ->  ( F : A -onto-> B  ->  B  e.  _V )
)
3635imp 429 . . 3  |-  ( ( F  e.  _V  /\  F : A -onto-> B )  ->  B  e.  _V )
37 pwexg 4473 . . 3  |-  ( B  e.  _V  ->  ~P B  e.  _V )
3836, 37syl 16 . 2  |-  ( ( F  e.  _V  /\  F : A -onto-> B )  ->  ~P B  e. 
_V )
39 dmfex 6534 . . . 4  |-  ( ( F  e.  _V  /\  F : A --> B )  ->  A  e.  _V )
403, 39sylan2 471 . . 3  |-  ( ( F  e.  _V  /\  F : A -onto-> B )  ->  A  e.  _V )
41 pwexg 4473 . . 3  |-  ( A  e.  _V  ->  ~P A  e.  _V )
4240, 41syl 16 . 2  |-  ( ( F  e.  _V  /\  F : A -onto-> B )  ->  ~P A  e. 
_V )
4315, 31, 38, 42dom3d 7347 1  |-  ( ( F  e.  _V  /\  F : A -onto-> B )  ->  ~P B  ~<_  ~P A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1761   _Vcvv 2970    C_ wss 3325   ~Pcpw 3857   class class class wbr 4289   `'ccnv 4835   dom cdm 4836   ran crn 4837   "cima 4839   -->wf 5411   -onto->wfo 5413    ~<_ cdom 7304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-fv 5423  df-dom 7308
This theorem is referenced by:  pwdom  7459  wdompwdom  7789
  Copyright terms: Public domain W3C validator