MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fodomr Structured version   Unicode version

Theorem fodomr 7605
Description: There exists a mapping from a set onto any (nonempty) set that it dominates. (Contributed by NM, 23-Mar-2006.)
Assertion
Ref Expression
fodomr  |-  ( (
(/)  ~<  B  /\  B  ~<_  A )  ->  E. f 
f : A -onto-> B
)
Distinct variable groups:    A, f    B, f

Proof of Theorem fodomr
Dummy variables  g 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldom 7459 . . . 4  |-  Rel  ~<_
21brrelex2i 4968 . . 3  |-  ( B  ~<_  A  ->  A  e.  _V )
32adantl 464 . 2  |-  ( (
(/)  ~<  B  /\  B  ~<_  A )  ->  A  e.  _V )
41brrelexi 4967 . . . 4  |-  ( B  ~<_  A  ->  B  e.  _V )
5 0sdomg 7583 . . . . 5  |-  ( B  e.  _V  ->  ( (/) 
~<  B  <->  B  =/=  (/) ) )
6 n0 3734 . . . . 5  |-  ( B  =/=  (/)  <->  E. z  z  e.  B )
75, 6syl6bb 261 . . . 4  |-  ( B  e.  _V  ->  ( (/) 
~<  B  <->  E. z  z  e.  B ) )
84, 7syl 16 . . 3  |-  ( B  ~<_  A  ->  ( (/)  ~<  B  <->  E. z 
z  e.  B ) )
98biimpac 484 . 2  |-  ( (
(/)  ~<  B  /\  B  ~<_  A )  ->  E. z 
z  e.  B )
10 brdomi 7464 . . 3  |-  ( B  ~<_  A  ->  E. g 
g : B -1-1-> A
)
1110adantl 464 . 2  |-  ( (
(/)  ~<  B  /\  B  ~<_  A )  ->  E. g 
g : B -1-1-> A
)
12 difexg 4526 . . . . . . . . . 10  |-  ( A  e.  _V  ->  ( A  \  ran  g )  e.  _V )
13 snex 4616 . . . . . . . . . 10  |-  { z }  e.  _V
14 xpexg 6519 . . . . . . . . . 10  |-  ( ( ( A  \  ran  g )  e.  _V  /\ 
{ z }  e.  _V )  ->  ( ( A  \  ran  g
)  X.  { z } )  e.  _V )
1512, 13, 14sylancl 660 . . . . . . . . 9  |-  ( A  e.  _V  ->  (
( A  \  ran  g )  X.  {
z } )  e. 
_V )
16 vex 3050 . . . . . . . . . 10  |-  g  e. 
_V
1716cnvex 6664 . . . . . . . . 9  |-  `' g  e.  _V
1815, 17jctil 535 . . . . . . . 8  |-  ( A  e.  _V  ->  ( `' g  e.  _V  /\  ( ( A  \  ran  g )  X.  {
z } )  e. 
_V ) )
19 unexb 6517 . . . . . . . 8  |-  ( ( `' g  e.  _V  /\  ( ( A  \  ran  g )  X.  {
z } )  e. 
_V )  <->  ( `' g  u.  ( ( A  \  ran  g )  X.  { z } ) )  e.  _V )
2018, 19sylib 196 . . . . . . 7  |-  ( A  e.  _V  ->  ( `' g  u.  (
( A  \  ran  g )  X.  {
z } ) )  e.  _V )
21 df-f1 5514 . . . . . . . . . . . . 13  |-  ( g : B -1-1-> A  <->  ( g : B --> A  /\  Fun  `' g ) )
2221simprbi 462 . . . . . . . . . . . 12  |-  ( g : B -1-1-> A  ->  Fun  `' g )
23 vex 3050 . . . . . . . . . . . . . 14  |-  z  e. 
_V
2423fconst 5692 . . . . . . . . . . . . 13  |-  ( ( A  \  ran  g
)  X.  { z } ) : ( A  \  ran  g
) --> { z }
25 ffun 5654 . . . . . . . . . . . . 13  |-  ( ( ( A  \  ran  g )  X.  {
z } ) : ( A  \  ran  g ) --> { z }  ->  Fun  ( ( A  \  ran  g
)  X.  { z } ) )
2624, 25ax-mp 5 . . . . . . . . . . . 12  |-  Fun  (
( A  \  ran  g )  X.  {
z } )
2722, 26jctir 536 . . . . . . . . . . 11  |-  ( g : B -1-1-> A  -> 
( Fun  `' g  /\  Fun  ( ( A 
\  ran  g )  X.  { z } ) ) )
28 df-rn 4937 . . . . . . . . . . . . . 14  |-  ran  g  =  dom  `' g
2928eqcomi 2405 . . . . . . . . . . . . 13  |-  dom  `' g  =  ran  g
3023snnz 4075 . . . . . . . . . . . . . 14  |-  { z }  =/=  (/)
31 dmxp 5147 . . . . . . . . . . . . . 14  |-  ( { z }  =/=  (/)  ->  dom  ( ( A  \  ran  g )  X.  {
z } )  =  ( A  \  ran  g ) )
3230, 31ax-mp 5 . . . . . . . . . . . . 13  |-  dom  (
( A  \  ran  g )  X.  {
z } )  =  ( A  \  ran  g )
3329, 32ineq12i 3625 . . . . . . . . . . . 12  |-  ( dom  `' g  i^i  dom  (
( A  \  ran  g )  X.  {
z } ) )  =  ( ran  g  i^i  ( A  \  ran  g ) )
34 disjdif 3829 . . . . . . . . . . . 12  |-  ( ran  g  i^i  ( A 
\  ran  g )
)  =  (/)
3533, 34eqtri 2421 . . . . . . . . . . 11  |-  ( dom  `' g  i^i  dom  (
( A  \  ran  g )  X.  {
z } ) )  =  (/)
36 funun 5551 . . . . . . . . . . 11  |-  ( ( ( Fun  `' g  /\  Fun  ( ( A  \  ran  g
)  X.  { z } ) )  /\  ( dom  `' g  i^i 
dom  ( ( A 
\  ran  g )  X.  { z } ) )  =  (/) )  ->  Fun  ( `' g  u.  ( ( A  \  ran  g )  X.  {
z } ) ) )
3727, 35, 36sylancl 660 . . . . . . . . . 10  |-  ( g : B -1-1-> A  ->  Fun  ( `' g  u.  ( ( A  \  ran  g )  X.  {
z } ) ) )
3837adantl 464 . . . . . . . . 9  |-  ( ( z  e.  B  /\  g : B -1-1-> A )  ->  Fun  ( `' g  u.  ( ( A  \  ran  g )  X.  { z } ) ) )
39 dmun 5135 . . . . . . . . . . . 12  |-  dom  ( `' g  u.  (
( A  \  ran  g )  X.  {
z } ) )  =  ( dom  `' g  u.  dom  ( ( A  \  ran  g
)  X.  { z } ) )
4028uneq1i 3581 . . . . . . . . . . . 12  |-  ( ran  g  u.  dom  (
( A  \  ran  g )  X.  {
z } ) )  =  ( dom  `' g  u.  dom  ( ( A  \  ran  g
)  X.  { z } ) )
4132uneq2i 3582 . . . . . . . . . . . 12  |-  ( ran  g  u.  dom  (
( A  \  ran  g )  X.  {
z } ) )  =  ( ran  g  u.  ( A  \  ran  g ) )
4239, 40, 413eqtr2i 2427 . . . . . . . . . . 11  |-  dom  ( `' g  u.  (
( A  \  ran  g )  X.  {
z } ) )  =  ( ran  g  u.  ( A  \  ran  g ) )
43 f1f 5702 . . . . . . . . . . . . 13  |-  ( g : B -1-1-> A  -> 
g : B --> A )
44 frn 5658 . . . . . . . . . . . . 13  |-  ( g : B --> A  ->  ran  g  C_  A )
4543, 44syl 16 . . . . . . . . . . . 12  |-  ( g : B -1-1-> A  ->  ran  g  C_  A )
46 undif 3837 . . . . . . . . . . . 12  |-  ( ran  g  C_  A  <->  ( ran  g  u.  ( A  \  ran  g ) )  =  A )
4745, 46sylib 196 . . . . . . . . . . 11  |-  ( g : B -1-1-> A  -> 
( ran  g  u.  ( A  \  ran  g
) )  =  A )
4842, 47syl5eq 2445 . . . . . . . . . 10  |-  ( g : B -1-1-> A  ->  dom  ( `' g  u.  ( ( A  \  ran  g )  X.  {
z } ) )  =  A )
4948adantl 464 . . . . . . . . 9  |-  ( ( z  e.  B  /\  g : B -1-1-> A )  ->  dom  ( `' g  u.  ( ( A  \  ran  g )  X.  { z } ) )  =  A )
50 df-fn 5512 . . . . . . . . 9  |-  ( ( `' g  u.  (
( A  \  ran  g )  X.  {
z } ) )  Fn  A  <->  ( Fun  ( `' g  u.  (
( A  \  ran  g )  X.  {
z } ) )  /\  dom  ( `' g  u.  ( ( A  \  ran  g
)  X.  { z } ) )  =  A ) )
5138, 49, 50sylanbrc 662 . . . . . . . 8  |-  ( ( z  e.  B  /\  g : B -1-1-> A )  ->  ( `' g  u.  ( ( A 
\  ran  g )  X.  { z } ) )  Fn  A )
52 rnun 5337 . . . . . . . . 9  |-  ran  ( `' g  u.  (
( A  \  ran  g )  X.  {
z } ) )  =  ( ran  `' g  u.  ran  ( ( A  \  ran  g
)  X.  { z } ) )
53 dfdm4 5121 . . . . . . . . . . . 12  |-  dom  g  =  ran  `' g
54 f1dm 5706 . . . . . . . . . . . 12  |-  ( g : B -1-1-> A  ->  dom  g  =  B
)
5553, 54syl5eqr 2447 . . . . . . . . . . 11  |-  ( g : B -1-1-> A  ->  ran  `' g  =  B
)
5655uneq1d 3584 . . . . . . . . . 10  |-  ( g : B -1-1-> A  -> 
( ran  `' g  u.  ran  ( ( A 
\  ran  g )  X.  { z } ) )  =  ( B  u.  ran  ( ( A  \  ran  g
)  X.  { z } ) ) )
57 xpeq1 4940 . . . . . . . . . . . . . . . . 17  |-  ( ( A  \  ran  g
)  =  (/)  ->  (
( A  \  ran  g )  X.  {
z } )  =  ( (/)  X.  { z } ) )
58 0xp 5007 . . . . . . . . . . . . . . . . 17  |-  ( (/)  X. 
{ z } )  =  (/)
5957, 58syl6eq 2449 . . . . . . . . . . . . . . . 16  |-  ( ( A  \  ran  g
)  =  (/)  ->  (
( A  \  ran  g )  X.  {
z } )  =  (/) )
6059rneqd 5156 . . . . . . . . . . . . . . 15  |-  ( ( A  \  ran  g
)  =  (/)  ->  ran  ( ( A  \  ran  g )  X.  {
z } )  =  ran  (/) )
61 rn0 5180 . . . . . . . . . . . . . . 15  |-  ran  (/)  =  (/)
6260, 61syl6eq 2449 . . . . . . . . . . . . . 14  |-  ( ( A  \  ran  g
)  =  (/)  ->  ran  ( ( A  \  ran  g )  X.  {
z } )  =  (/) )
63 0ss 3754 . . . . . . . . . . . . . 14  |-  (/)  C_  B
6462, 63syl6eqss 3480 . . . . . . . . . . . . 13  |-  ( ( A  \  ran  g
)  =  (/)  ->  ran  ( ( A  \  ran  g )  X.  {
z } )  C_  B )
6564a1d 25 . . . . . . . . . . . 12  |-  ( ( A  \  ran  g
)  =  (/)  ->  (
z  e.  B  ->  ran  ( ( A  \  ran  g )  X.  {
z } )  C_  B ) )
66 rnxp 5360 . . . . . . . . . . . . . . 15  |-  ( ( A  \  ran  g
)  =/=  (/)  ->  ran  ( ( A  \  ran  g )  X.  {
z } )  =  { z } )
6766adantr 463 . . . . . . . . . . . . . 14  |-  ( ( ( A  \  ran  g )  =/=  (/)  /\  z  e.  B )  ->  ran  ( ( A  \  ran  g )  X.  {
z } )  =  { z } )
68 snssi 4101 . . . . . . . . . . . . . . 15  |-  ( z  e.  B  ->  { z }  C_  B )
6968adantl 464 . . . . . . . . . . . . . 14  |-  ( ( ( A  \  ran  g )  =/=  (/)  /\  z  e.  B )  ->  { z }  C_  B )
7067, 69eqsstrd 3464 . . . . . . . . . . . . 13  |-  ( ( ( A  \  ran  g )  =/=  (/)  /\  z  e.  B )  ->  ran  ( ( A  \  ran  g )  X.  {
z } )  C_  B )
7170ex 432 . . . . . . . . . . . 12  |-  ( ( A  \  ran  g
)  =/=  (/)  ->  (
z  e.  B  ->  ran  ( ( A  \  ran  g )  X.  {
z } )  C_  B ) )
7265, 71pm2.61ine 2705 . . . . . . . . . . 11  |-  ( z  e.  B  ->  ran  ( ( A  \  ran  g )  X.  {
z } )  C_  B )
73 ssequn2 3604 . . . . . . . . . . 11  |-  ( ran  ( ( A  \  ran  g )  X.  {
z } )  C_  B 
<->  ( B  u.  ran  ( ( A  \  ran  g )  X.  {
z } ) )  =  B )
7472, 73sylib 196 . . . . . . . . . 10  |-  ( z  e.  B  ->  ( B  u.  ran  ( ( A  \  ran  g
)  X.  { z } ) )  =  B )
7556, 74sylan9eqr 2455 . . . . . . . . 9  |-  ( ( z  e.  B  /\  g : B -1-1-> A )  ->  ( ran  `' g  u.  ran  ( ( A  \  ran  g
)  X.  { z } ) )  =  B )
7652, 75syl5eq 2445 . . . . . . . 8  |-  ( ( z  e.  B  /\  g : B -1-1-> A )  ->  ran  ( `' g  u.  ( ( A  \  ran  g )  X.  { z } ) )  =  B )
77 df-fo 5515 . . . . . . . 8  |-  ( ( `' g  u.  (
( A  \  ran  g )  X.  {
z } ) ) : A -onto-> B  <->  ( ( `' g  u.  (
( A  \  ran  g )  X.  {
z } ) )  Fn  A  /\  ran  ( `' g  u.  (
( A  \  ran  g )  X.  {
z } ) )  =  B ) )
7851, 76, 77sylanbrc 662 . . . . . . 7  |-  ( ( z  e.  B  /\  g : B -1-1-> A )  ->  ( `' g  u.  ( ( A 
\  ran  g )  X.  { z } ) ) : A -onto-> B
)
79 foeq1 5712 . . . . . . . 8  |-  ( f  =  ( `' g  u.  ( ( A 
\  ran  g )  X.  { z } ) )  ->  ( f : A -onto-> B  <->  ( `' g  u.  ( ( A 
\  ran  g )  X.  { z } ) ) : A -onto-> B
) )
8079spcegv 3133 . . . . . . 7  |-  ( ( `' g  u.  (
( A  \  ran  g )  X.  {
z } ) )  e.  _V  ->  (
( `' g  u.  ( ( A  \  ran  g )  X.  {
z } ) ) : A -onto-> B  ->  E. f  f : A -onto-> B ) )
8120, 78, 80syl2im 38 . . . . . 6  |-  ( A  e.  _V  ->  (
( z  e.  B  /\  g : B -1-1-> A
)  ->  E. f 
f : A -onto-> B
) )
8281expdimp 435 . . . . 5  |-  ( ( A  e.  _V  /\  z  e.  B )  ->  ( g : B -1-1-> A  ->  E. f  f : A -onto-> B ) )
8382exlimdv 1739 . . . 4  |-  ( ( A  e.  _V  /\  z  e.  B )  ->  ( E. g  g : B -1-1-> A  ->  E. f  f : A -onto-> B ) )
8483ex 432 . . 3  |-  ( A  e.  _V  ->  (
z  e.  B  -> 
( E. g  g : B -1-1-> A  ->  E. f  f : A -onto-> B ) ) )
8584exlimdv 1739 . 2  |-  ( A  e.  _V  ->  ( E. z  z  e.  B  ->  ( E. g 
g : B -1-1-> A  ->  E. f  f : A -onto-> B ) ) )
863, 9, 11, 85syl3c 61 1  |-  ( (
(/)  ~<  B  /\  B  ~<_  A )  ->  E. f 
f : A -onto-> B
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1399   E.wex 1627    e. wcel 1836    =/= wne 2587   _Vcvv 3047    \ cdif 3399    u. cun 3400    i^i cin 3401    C_ wss 3402   (/)c0 3724   {csn 3957   class class class wbr 4380    X. cxp 4924   `'ccnv 4925   dom cdm 4926   ran crn 4927   Fun wfun 5503    Fn wfn 5504   -->wf 5505   -1-1->wf1 5506   -onto->wfo 5507    ~<_ cdom 7451    ~< csdm 7452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1633  ax-4 1646  ax-5 1719  ax-6 1765  ax-7 1808  ax-8 1838  ax-9 1840  ax-10 1855  ax-11 1860  ax-12 1872  ax-13 2016  ax-ext 2370  ax-sep 4501  ax-nul 4509  ax-pow 4556  ax-pr 4614  ax-un 6509
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1402  df-ex 1628  df-nf 1632  df-sb 1758  df-eu 2232  df-mo 2233  df-clab 2378  df-cleq 2384  df-clel 2387  df-nfc 2542  df-ne 2589  df-ral 2747  df-rex 2748  df-rab 2751  df-v 3049  df-dif 3405  df-un 3407  df-in 3409  df-ss 3416  df-nul 3725  df-if 3871  df-pw 3942  df-sn 3958  df-pr 3960  df-op 3964  df-uni 4177  df-br 4381  df-opab 4439  df-mpt 4440  df-id 4722  df-xp 4932  df-rel 4933  df-cnv 4934  df-co 4935  df-dm 4936  df-rn 4937  df-res 4938  df-ima 4939  df-fun 5511  df-fn 5512  df-f 5513  df-f1 5514  df-fo 5515  df-f1o 5516  df-er 7247  df-en 7454  df-dom 7455  df-sdom 7456
This theorem is referenced by:  pwdom  7606  fodomfib  7733  domwdom  7933  iunfictbso  8426  fodomb  8835  brdom3  8837  konigthlem  8874  1stcfb  20050  ovoliunnul  22022  sigapildsys  28342  carsgclctunlem3  28483  ovoliunnfl  30257  voliunnfl  30259  volsupnfl  30260
  Copyright terms: Public domain W3C validator