MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fodomfib Structured version   Unicode version

Theorem fodomfib 7796
Description: Equivalence of an onto mapping and dominance for a nonempty finite set. Unlike fodomb 8900 for arbitrary sets, this theorem does not require the Axiom of Choice for its proof. (Contributed by NM, 23-Mar-2006.)
Assertion
Ref Expression
fodomfib  |-  ( A  e.  Fin  ->  (
( A  =/=  (/)  /\  E. f  f : A -onto-> B )  <->  ( (/)  ~<  B  /\  B  ~<_  A ) ) )
Distinct variable groups:    A, f    B, f

Proof of Theorem fodomfib
StepHypRef Expression
1 fof 5793 . . . . . . . . . . . . 13  |-  ( f : A -onto-> B  -> 
f : A --> B )
2 fdm 5733 . . . . . . . . . . . . 13  |-  ( f : A --> B  ->  dom  f  =  A
)
31, 2syl 16 . . . . . . . . . . . 12  |-  ( f : A -onto-> B  ->  dom  f  =  A
)
43eqeq1d 2469 . . . . . . . . . . 11  |-  ( f : A -onto-> B  -> 
( dom  f  =  (/)  <->  A  =  (/) ) )
5 dm0rn0 5217 . . . . . . . . . . . 12  |-  ( dom  f  =  (/)  <->  ran  f  =  (/) )
6 forn 5796 . . . . . . . . . . . . 13  |-  ( f : A -onto-> B  ->  ran  f  =  B
)
76eqeq1d 2469 . . . . . . . . . . . 12  |-  ( f : A -onto-> B  -> 
( ran  f  =  (/)  <->  B  =  (/) ) )
85, 7syl5bb 257 . . . . . . . . . . 11  |-  ( f : A -onto-> B  -> 
( dom  f  =  (/)  <->  B  =  (/) ) )
94, 8bitr3d 255 . . . . . . . . . 10  |-  ( f : A -onto-> B  -> 
( A  =  (/)  <->  B  =  (/) ) )
109necon3bid 2725 . . . . . . . . 9  |-  ( f : A -onto-> B  -> 
( A  =/=  (/)  <->  B  =/=  (/) ) )
1110biimpac 486 . . . . . . . 8  |-  ( ( A  =/=  (/)  /\  f : A -onto-> B )  ->  B  =/=  (/) )
1211adantll 713 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/) )  /\  f : A -onto-> B )  ->  B  =/=  (/) )
13 vex 3116 . . . . . . . . . . . 12  |-  f  e. 
_V
1413rnex 6715 . . . . . . . . . . 11  |-  ran  f  e.  _V
156, 14syl6eqelr 2564 . . . . . . . . . 10  |-  ( f : A -onto-> B  ->  B  e.  _V )
1615adantl 466 . . . . . . . . 9  |-  ( ( A  e.  Fin  /\  f : A -onto-> B )  ->  B  e.  _V )
17 0sdomg 7643 . . . . . . . . 9  |-  ( B  e.  _V  ->  ( (/) 
~<  B  <->  B  =/=  (/) ) )
1816, 17syl 16 . . . . . . . 8  |-  ( ( A  e.  Fin  /\  f : A -onto-> B )  ->  ( (/)  ~<  B  <->  B  =/=  (/) ) )
1918adantlr 714 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/) )  /\  f : A -onto-> B )  ->  ( (/)  ~<  B  <->  B  =/=  (/) ) )
2012, 19mpbird 232 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/) )  /\  f : A -onto-> B )  ->  (/)  ~<  B )
2120ex 434 . . . . 5  |-  ( ( A  e.  Fin  /\  A  =/=  (/) )  ->  (
f : A -onto-> B  -> 
(/)  ~<  B ) )
22 fodomfi 7795 . . . . . . 7  |-  ( ( A  e.  Fin  /\  f : A -onto-> B )  ->  B  ~<_  A )
2322ex 434 . . . . . 6  |-  ( A  e.  Fin  ->  (
f : A -onto-> B  ->  B  ~<_  A ) )
2423adantr 465 . . . . 5  |-  ( ( A  e.  Fin  /\  A  =/=  (/) )  ->  (
f : A -onto-> B  ->  B  ~<_  A ) )
2521, 24jcad 533 . . . 4  |-  ( ( A  e.  Fin  /\  A  =/=  (/) )  ->  (
f : A -onto-> B  ->  ( (/)  ~<  B  /\  B  ~<_  A ) ) )
2625exlimdv 1700 . . 3  |-  ( ( A  e.  Fin  /\  A  =/=  (/) )  ->  ( E. f  f : A -onto-> B  ->  ( (/)  ~<  B  /\  B  ~<_  A ) ) )
2726expimpd 603 . 2  |-  ( A  e.  Fin  ->  (
( A  =/=  (/)  /\  E. f  f : A -onto-> B )  ->  ( (/) 
~<  B  /\  B  ~<_  A ) ) )
28 sdomdomtr 7647 . . . 4  |-  ( (
(/)  ~<  B  /\  B  ~<_  A )  ->  (/)  ~<  A )
29 0sdomg 7643 . . . 4  |-  ( A  e.  Fin  ->  ( (/) 
~<  A  <->  A  =/=  (/) ) )
3028, 29syl5ib 219 . . 3  |-  ( A  e.  Fin  ->  (
( (/)  ~<  B  /\  B  ~<_  A )  ->  A  =/=  (/) ) )
31 fodomr 7665 . . . 4  |-  ( (
(/)  ~<  B  /\  B  ~<_  A )  ->  E. f 
f : A -onto-> B
)
3231a1i 11 . . 3  |-  ( A  e.  Fin  ->  (
( (/)  ~<  B  /\  B  ~<_  A )  ->  E. f  f : A -onto-> B ) )
3330, 32jcad 533 . 2  |-  ( A  e.  Fin  ->  (
( (/)  ~<  B  /\  B  ~<_  A )  -> 
( A  =/=  (/)  /\  E. f  f : A -onto-> B ) ) )
3427, 33impbid 191 1  |-  ( A  e.  Fin  ->  (
( A  =/=  (/)  /\  E. f  f : A -onto-> B )  <->  ( (/)  ~<  B  /\  B  ~<_  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379   E.wex 1596    e. wcel 1767    =/= wne 2662   _Vcvv 3113   (/)c0 3785   class class class wbr 4447   dom cdm 4999   ran crn 5000   -->wf 5582   -onto->wfo 5584    ~<_ cdom 7511    ~< csdm 7512   Fincfn 7513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-om 6679  df-1o 7127  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator