MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fodomb Structured version   Unicode version

Theorem fodomb 8893
Description: Equivalence of an onto mapping and dominance for a nonempty set. Proposition 10.35 of [TakeutiZaring] p. 93. (Contributed by NM, 29-Jul-2004.)
Assertion
Ref Expression
fodomb  |-  ( ( A  =/=  (/)  /\  E. f  f : A -onto-> B )  <->  ( (/)  ~<  B  /\  B  ~<_  A ) )
Distinct variable groups:    A, f    B, f

Proof of Theorem fodomb
StepHypRef Expression
1 fof 5786 . . . . . . . . . . . 12  |-  ( f : A -onto-> B  -> 
f : A --> B )
2 fdm 5726 . . . . . . . . . . . 12  |-  ( f : A --> B  ->  dom  f  =  A
)
31, 2syl 16 . . . . . . . . . . 11  |-  ( f : A -onto-> B  ->  dom  f  =  A
)
43eqeq1d 2462 . . . . . . . . . 10  |-  ( f : A -onto-> B  -> 
( dom  f  =  (/)  <->  A  =  (/) ) )
5 dm0rn0 5210 . . . . . . . . . . 11  |-  ( dom  f  =  (/)  <->  ran  f  =  (/) )
6 forn 5789 . . . . . . . . . . . 12  |-  ( f : A -onto-> B  ->  ran  f  =  B
)
76eqeq1d 2462 . . . . . . . . . . 11  |-  ( f : A -onto-> B  -> 
( ran  f  =  (/)  <->  B  =  (/) ) )
85, 7syl5bb 257 . . . . . . . . . 10  |-  ( f : A -onto-> B  -> 
( dom  f  =  (/)  <->  B  =  (/) ) )
94, 8bitr3d 255 . . . . . . . . 9  |-  ( f : A -onto-> B  -> 
( A  =  (/)  <->  B  =  (/) ) )
109necon3bid 2718 . . . . . . . 8  |-  ( f : A -onto-> B  -> 
( A  =/=  (/)  <->  B  =/=  (/) ) )
1110biimpac 486 . . . . . . 7  |-  ( ( A  =/=  (/)  /\  f : A -onto-> B )  ->  B  =/=  (/) )
12 vex 3109 . . . . . . . . . . . 12  |-  f  e. 
_V
1312dmex 6707 . . . . . . . . . . 11  |-  dom  f  e.  _V
143, 13syl6eqelr 2557 . . . . . . . . . 10  |-  ( f : A -onto-> B  ->  A  e.  _V )
15 fornex 6743 . . . . . . . . . 10  |-  ( A  e.  _V  ->  (
f : A -onto-> B  ->  B  e.  _V )
)
1614, 15mpcom 36 . . . . . . . . 9  |-  ( f : A -onto-> B  ->  B  e.  _V )
17 0sdomg 7636 . . . . . . . . 9  |-  ( B  e.  _V  ->  ( (/) 
~<  B  <->  B  =/=  (/) ) )
1816, 17syl 16 . . . . . . . 8  |-  ( f : A -onto-> B  -> 
( (/)  ~<  B  <->  B  =/=  (/) ) )
1918adantl 466 . . . . . . 7  |-  ( ( A  =/=  (/)  /\  f : A -onto-> B )  ->  ( (/) 
~<  B  <->  B  =/=  (/) ) )
2011, 19mpbird 232 . . . . . 6  |-  ( ( A  =/=  (/)  /\  f : A -onto-> B )  ->  (/)  ~<  B )
2120ex 434 . . . . 5  |-  ( A  =/=  (/)  ->  ( f : A -onto-> B  ->  (/)  ~<  B ) )
22 fodomg 8892 . . . . . . 7  |-  ( A  e.  _V  ->  (
f : A -onto-> B  ->  B  ~<_  A ) )
2314, 22mpcom 36 . . . . . 6  |-  ( f : A -onto-> B  ->  B  ~<_  A )
2423a1i 11 . . . . 5  |-  ( A  =/=  (/)  ->  ( f : A -onto-> B  ->  B  ~<_  A ) )
2521, 24jcad 533 . . . 4  |-  ( A  =/=  (/)  ->  ( f : A -onto-> B  ->  ( (/)  ~<  B  /\  B  ~<_  A ) ) )
2625exlimdv 1695 . . 3  |-  ( A  =/=  (/)  ->  ( E. f  f : A -onto-> B  ->  ( (/)  ~<  B  /\  B  ~<_  A ) ) )
2726imp 429 . 2  |-  ( ( A  =/=  (/)  /\  E. f  f : A -onto-> B )  ->  ( (/) 
~<  B  /\  B  ~<_  A ) )
28 sdomdomtr 7640 . . . 4  |-  ( (
(/)  ~<  B  /\  B  ~<_  A )  ->  (/)  ~<  A )
29 reldom 7512 . . . . . . 7  |-  Rel  ~<_
3029brrelex2i 5033 . . . . . 6  |-  ( B  ~<_  A  ->  A  e.  _V )
3130adantl 466 . . . . 5  |-  ( (
(/)  ~<  B  /\  B  ~<_  A )  ->  A  e.  _V )
32 0sdomg 7636 . . . . 5  |-  ( A  e.  _V  ->  ( (/) 
~<  A  <->  A  =/=  (/) ) )
3331, 32syl 16 . . . 4  |-  ( (
(/)  ~<  B  /\  B  ~<_  A )  ->  ( (/) 
~<  A  <->  A  =/=  (/) ) )
3428, 33mpbid 210 . . 3  |-  ( (
(/)  ~<  B  /\  B  ~<_  A )  ->  A  =/=  (/) )
35 fodomr 7658 . . 3  |-  ( (
(/)  ~<  B  /\  B  ~<_  A )  ->  E. f 
f : A -onto-> B
)
3634, 35jca 532 . 2  |-  ( (
(/)  ~<  B  /\  B  ~<_  A )  ->  ( A  =/=  (/)  /\  E. f 
f : A -onto-> B
) )
3727, 36impbii 188 1  |-  ( ( A  =/=  (/)  /\  E. f  f : A -onto-> B )  <->  ( (/)  ~<  B  /\  B  ~<_  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374   E.wex 1591    e. wcel 1762    =/= wne 2655   _Vcvv 3106   (/)c0 3778   class class class wbr 4440   dom cdm 4992   ran crn 4993   -->wf 5575   -onto->wfo 5577    ~<_ cdom 7504    ~< csdm 7505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-ac2 8832
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-se 4832  df-we 4833  df-ord 4874  df-on 4875  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-isom 5588  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-1st 6774  df-2nd 6775  df-recs 7032  df-er 7301  df-map 7412  df-en 7507  df-dom 7508  df-sdom 7509  df-card 8309  df-acn 8312  df-ac 8486
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator