MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fo2ndres Structured version   Visualization version   Unicode version

Theorem fo2ndres 6818
Description: Onto mapping of a restriction of the  2nd (second member of an ordered pair) function. (Contributed by NM, 14-Dec-2008.)
Assertion
Ref Expression
fo2ndres  |-  ( A  =/=  (/)  ->  ( 2nd  |`  ( A  X.  B
) ) : ( A  X.  B )
-onto-> B )

Proof of Theorem fo2ndres
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 3741 . . . . . . 7  |-  ( A  =/=  (/)  <->  E. x  x  e.  A )
2 opelxp 4864 . . . . . . . . . 10  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  <->  ( x  e.  A  /\  y  e.  B ) )
3 fvres 5879 . . . . . . . . . . . 12  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  ->  ( ( 2nd  |`  ( A  X.  B ) ) `  <. x ,  y >.
)  =  ( 2nd `  <. x ,  y
>. ) )
4 vex 3048 . . . . . . . . . . . . 13  |-  x  e. 
_V
5 vex 3048 . . . . . . . . . . . . 13  |-  y  e. 
_V
64, 5op2nd 6802 . . . . . . . . . . . 12  |-  ( 2nd `  <. x ,  y
>. )  =  y
73, 6syl6req 2502 . . . . . . . . . . 11  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  ->  y  =  ( ( 2nd  |`  ( A  X.  B ) ) `
 <. x ,  y
>. ) )
8 f2ndres 6816 . . . . . . . . . . . . 13  |-  ( 2nd  |`  ( A  X.  B
) ) : ( A  X.  B ) --> B
9 ffn 5728 . . . . . . . . . . . . 13  |-  ( ( 2nd  |`  ( A  X.  B ) ) : ( A  X.  B
) --> B  ->  ( 2nd  |`  ( A  X.  B ) )  Fn  ( A  X.  B
) )
108, 9ax-mp 5 . . . . . . . . . . . 12  |-  ( 2nd  |`  ( A  X.  B
) )  Fn  ( A  X.  B )
11 fnfvelrn 6019 . . . . . . . . . . . 12  |-  ( ( ( 2nd  |`  ( A  X.  B ) )  Fn  ( A  X.  B )  /\  <. x ,  y >.  e.  ( A  X.  B ) )  ->  ( ( 2nd  |`  ( A  X.  B ) ) `  <. x ,  y >.
)  e.  ran  ( 2nd  |`  ( A  X.  B ) ) )
1210, 11mpan 676 . . . . . . . . . . 11  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  ->  ( ( 2nd  |`  ( A  X.  B ) ) `  <. x ,  y >.
)  e.  ran  ( 2nd  |`  ( A  X.  B ) ) )
137, 12eqeltrd 2529 . . . . . . . . . 10  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  ->  y  e.  ran  ( 2nd  |`  ( A  X.  B ) ) )
142, 13sylbir 217 . . . . . . . . 9  |-  ( ( x  e.  A  /\  y  e.  B )  ->  y  e.  ran  ( 2nd  |`  ( A  X.  B ) ) )
1514ex 436 . . . . . . . 8  |-  ( x  e.  A  ->  (
y  e.  B  -> 
y  e.  ran  ( 2nd  |`  ( A  X.  B ) ) ) )
1615exlimiv 1776 . . . . . . 7  |-  ( E. x  x  e.  A  ->  ( y  e.  B  ->  y  e.  ran  ( 2nd  |`  ( A  X.  B ) ) ) )
171, 16sylbi 199 . . . . . 6  |-  ( A  =/=  (/)  ->  ( y  e.  B  ->  y  e. 
ran  ( 2nd  |`  ( A  X.  B ) ) ) )
1817ssrdv 3438 . . . . 5  |-  ( A  =/=  (/)  ->  B  C_  ran  ( 2nd  |`  ( A  X.  B ) ) )
19 frn 5735 . . . . . 6  |-  ( ( 2nd  |`  ( A  X.  B ) ) : ( A  X.  B
) --> B  ->  ran  ( 2nd  |`  ( A  X.  B ) )  C_  B )
208, 19ax-mp 5 . . . . 5  |-  ran  ( 2nd  |`  ( A  X.  B ) )  C_  B
2118, 20jctil 540 . . . 4  |-  ( A  =/=  (/)  ->  ( ran  ( 2nd  |`  ( A  X.  B ) )  C_  B  /\  B  C_  ran  ( 2nd  |`  ( A  X.  B ) ) ) )
22 eqss 3447 . . . 4  |-  ( ran  ( 2nd  |`  ( A  X.  B ) )  =  B  <->  ( ran  ( 2nd  |`  ( A  X.  B ) )  C_  B  /\  B  C_  ran  ( 2nd  |`  ( A  X.  B ) ) ) )
2321, 22sylibr 216 . . 3  |-  ( A  =/=  (/)  ->  ran  ( 2nd  |`  ( A  X.  B
) )  =  B )
2423, 8jctil 540 . 2  |-  ( A  =/=  (/)  ->  ( ( 2nd  |`  ( A  X.  B ) ) : ( A  X.  B
) --> B  /\  ran  ( 2nd  |`  ( A  X.  B ) )  =  B ) )
25 dffo2 5797 . 2  |-  ( ( 2nd  |`  ( A  X.  B ) ) : ( A  X.  B
) -onto-> B  <->  ( ( 2nd  |`  ( A  X.  B
) ) : ( A  X.  B ) --> B  /\  ran  ( 2nd  |`  ( A  X.  B ) )  =  B ) )
2624, 25sylibr 216 1  |-  ( A  =/=  (/)  ->  ( 2nd  |`  ( A  X.  B
) ) : ( A  X.  B )
-onto-> B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    = wceq 1444   E.wex 1663    e. wcel 1887    =/= wne 2622    C_ wss 3404   (/)c0 3731   <.cop 3974    X. cxp 4832   ran crn 4835    |` cres 4836    Fn wfn 5577   -->wf 5578   -onto->wfo 5580   ` cfv 5582   2ndc2nd 6792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-id 4749  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-fo 5588  df-fv 5590  df-2nd 6794
This theorem is referenced by:  2ndconst  6885  txcmpb  20659
  Copyright terms: Public domain W3C validator