Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnwe2lem1 Structured version   Unicode version

Theorem fnwe2lem1 29426
Description: Lemma for fnwe2 29429. Substitution in well-ordering hypothesis. (Contributed by Stefan O'Rear, 19-Jan-2015.)
Hypotheses
Ref Expression
fnwe2.su  |-  ( z  =  ( F `  x )  ->  S  =  U )
fnwe2.t  |-  T  =  { <. x ,  y
>.  |  ( ( F `  x ) R ( F `  y )  \/  (
( F `  x
)  =  ( F `
 y )  /\  x U y ) ) }
fnwe2.s  |-  ( (
ph  /\  x  e.  A )  ->  U  We  { y  e.  A  |  ( F `  y )  =  ( F `  x ) } )
Assertion
Ref Expression
fnwe2lem1  |-  ( (
ph  /\  a  e.  A )  ->  [_ ( F `  a )  /  z ]_ S  We  { y  e.  A  |  ( F `  y )  =  ( F `  a ) } )
Distinct variable groups:    y, U, z, a    x, S, y, a    x, R, y, a    ph, x, y, z   
x, A, y, z, a    x, F, y, z, a    T, a
Allowed substitution hints:    ph( a)    R( z)    S( z)    T( x, y, z)    U( x)

Proof of Theorem fnwe2lem1
StepHypRef Expression
1 fnwe2.s . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  U  We  { y  e.  A  |  ( F `  y )  =  ( F `  x ) } )
21ralrimiva 2818 . . 3  |-  ( ph  ->  A. x  e.  A  U  We  { y  e.  A  |  ( F `  y )  =  ( F `  x ) } )
3 fveq2 5710 . . . . . . 7  |-  ( a  =  x  ->  ( F `  a )  =  ( F `  x ) )
43csbeq1d 3314 . . . . . 6  |-  ( a  =  x  ->  [_ ( F `  a )  /  z ]_ S  =  [_ ( F `  x )  /  z ]_ S )
5 fvex 5720 . . . . . . 7  |-  ( F `
 x )  e. 
_V
6 nfcv 2589 . . . . . . 7  |-  F/_ z U
7 fnwe2.su . . . . . . 7  |-  ( z  =  ( F `  x )  ->  S  =  U )
85, 6, 7csbief 3332 . . . . . 6  |-  [_ ( F `  x )  /  z ]_ S  =  U
94, 8syl6eq 2491 . . . . 5  |-  ( a  =  x  ->  [_ ( F `  a )  /  z ]_ S  =  U )
103eqeq2d 2454 . . . . . 6  |-  ( a  =  x  ->  (
( F `  y
)  =  ( F `
 a )  <->  ( F `  y )  =  ( F `  x ) ) )
1110rabbidv 2983 . . . . 5  |-  ( a  =  x  ->  { y  e.  A  |  ( F `  y )  =  ( F `  a ) }  =  { y  e.  A  |  ( F `  y )  =  ( F `  x ) } )
129, 11weeq12d 29415 . . . 4  |-  ( a  =  x  ->  ( [_ ( F `  a
)  /  z ]_ S  We  { y  e.  A  |  ( F `  y )  =  ( F `  a ) }  <->  U  We  { y  e.  A  | 
( F `  y
)  =  ( F `
 x ) } ) )
1312cbvralv 2966 . . 3  |-  ( A. a  e.  A  [_ ( F `  a )  /  z ]_ S  We  { y  e.  A  |  ( F `  y )  =  ( F `  a ) }  <->  A. x  e.  A  U  We  { y  e.  A  |  ( F `  y )  =  ( F `  x ) } )
142, 13sylibr 212 . 2  |-  ( ph  ->  A. a  e.  A  [_ ( F `  a
)  /  z ]_ S  We  { y  e.  A  |  ( F `  y )  =  ( F `  a ) } )
1514r19.21bi 2833 1  |-  ( (
ph  /\  a  e.  A )  ->  [_ ( F `  a )  /  z ]_ S  We  { y  e.  A  |  ( F `  y )  =  ( F `  a ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2734   {crab 2738   [_csb 3307   class class class wbr 4311   {copab 4368    We wwe 4697   ` cfv 5437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-nul 4440
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2739  df-rex 2740  df-rab 2743  df-v 2993  df-sbc 3206  df-csb 3308  df-dif 3350  df-un 3352  df-in 3354  df-ss 3361  df-nul 3657  df-if 3811  df-sn 3897  df-pr 3899  df-op 3903  df-uni 4111  df-br 4312  df-po 4660  df-so 4661  df-fr 4698  df-we 4700  df-iota 5400  df-fv 5445
This theorem is referenced by:  fnwe2lem2  29427  fnwe2lem3  29428
  Copyright terms: Public domain W3C validator