MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnsng Structured version   Unicode version

Theorem fnsng 5641
Description: Functionality and domain of the singleton of an ordered pair. (Contributed by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
fnsng  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. A ,  B >. }  Fn  { A } )

Proof of Theorem fnsng
StepHypRef Expression
1 funsng 5640 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  Fun  { <. A ,  B >. } )
2 dmsnopg 5485 . . 3  |-  ( B  e.  W  ->  dom  {
<. A ,  B >. }  =  { A }
)
32adantl 466 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  dom  { <. A ,  B >. }  =  { A } )
4 df-fn 5597 . 2  |-  ( {
<. A ,  B >. }  Fn  { A }  <->  ( Fun  { <. A ,  B >. }  /\  dom  {
<. A ,  B >. }  =  { A }
) )
51, 3, 4sylanbrc 664 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. A ,  B >. }  Fn  { A } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   {csn 4033   <.cop 4039   dom cdm 5005   Fun wfun 5588    Fn wfn 5589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pr 4692
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-sn 4034  df-pr 4036  df-op 4040  df-br 4454  df-opab 4512  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-fun 5596  df-fn 5597
This theorem is referenced by:  fnsn  5647  fnunsn  5694  fsnunfv  6112  suppsnop  6927  mat1dimscm  18846  m1detdiag  18968
  Copyright terms: Public domain W3C validator