![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fnrel | Structured version Unicode version |
Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
fnrel |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 5619 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | funrel 5546 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 16 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 df-fun 5531 df-fn 5532 |
This theorem is referenced by: fnbr 5624 fnresdm 5631 fn0 5641 frel 5673 fcoi2 5697 f1rel 5720 f1ocnv 5764 dffn5 5849 fnsnfv 5863 fconst5 6047 fnex 6056 fnexALT 6656 tz7.48-2 7010 zorn2lem4 8782 imasvscafn 14597 2oppchomf 14785 feqmptdf 26149 dfafn5a 30234 resfnfinfin 30333 bnj66 32205 |
Copyright terms: Public domain | W3C validator |