![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnrel | Structured version Visualization version Unicode version |
Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
fnrel |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 5671 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | funrel 5598 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 17 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 189 df-an 373 df-fun 5583 df-fn 5584 |
This theorem is referenced by: fnbr 5676 fnresdm 5683 fn0 5693 frel 5730 fcoi2 5756 f1rel 5780 f1ocnv 5824 dffn5 5908 fnsnfv 5923 fconst5 6120 fnex 6130 fnexALT 6756 tz7.48-2 7156 zorn2lem4 8926 imasvscafn 15436 2oppchomf 15622 idssxp 28220 feqmptdf 28251 bnj66 29664 rtrclex 36218 fnresdmss 37425 dfafn5a 38656 resfnfinfin 39025 |
Copyright terms: Public domain | W3C validator |