MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnrel Structured version   Unicode version

Theorem fnrel 5620
Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
fnrel  |-  ( F  Fn  A  ->  Rel  F )

Proof of Theorem fnrel
StepHypRef Expression
1 fnfun 5619 . 2  |-  ( F  Fn  A  ->  Fun  F )
2 funrel 5546 . 2  |-  ( Fun 
F  ->  Rel  F )
31, 2syl 16 1  |-  ( F  Fn  A  ->  Rel  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   Rel wrel 4956   Fun wfun 5523    Fn wfn 5524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-fun 5531  df-fn 5532
This theorem is referenced by:  fnbr  5624  fnresdm  5631  fn0  5641  frel  5673  fcoi2  5697  f1rel  5720  f1ocnv  5764  dffn5  5849  fnsnfv  5863  fconst5  6047  fnex  6056  fnexALT  6656  tz7.48-2  7010  zorn2lem4  8782  imasvscafn  14597  2oppchomf  14785  feqmptdf  26149  dfafn5a  30234  resfnfinfin  30333  bnj66  32205
  Copyright terms: Public domain W3C validator