MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnrel Structured version   Unicode version

Theorem fnrel 5683
Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
fnrel  |-  ( F  Fn  A  ->  Rel  F )

Proof of Theorem fnrel
StepHypRef Expression
1 fnfun 5682 . 2  |-  ( F  Fn  A  ->  Fun  F )
2 funrel 5609 . 2  |-  ( Fun 
F  ->  Rel  F )
31, 2syl 17 1  |-  ( F  Fn  A  ->  Rel  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   Rel wrel 4850   Fun wfun 5586    Fn wfn 5587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 188  df-an 372  df-fun 5594  df-fn 5595
This theorem is referenced by:  fnbr  5687  fnresdm  5694  fn0  5704  frel  5740  fcoi2  5766  f1rel  5790  f1ocnv  5834  dffn5  5917  fnsnfv  5932  fconst5  6128  fnex  6138  fnexALT  6764  tz7.48-2  7158  zorn2lem4  8918  imasvscafn  15395  2oppchomf  15581  idssxp  28108  feqmptdf  28139  bnj66  29500  fnresdmss  37101  dfafn5a  38109  resfnfinfin  38444
  Copyright terms: Public domain W3C validator