![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnpm | Structured version Visualization version Unicode version |
Description: Partial function exponentiation has a universal domain. (Contributed by Mario Carneiro, 14-Nov-2013.) |
Ref | Expression |
---|---|
fnpm |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pm 7501 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | vex 3060 |
. . . . 5
![]() ![]() ![]() ![]() | |
3 | vex 3060 |
. . . . 5
![]() ![]() ![]() ![]() | |
4 | 2, 3 | xpex 6622 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 4 | pwex 4600 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 5 | rabex 4568 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 1, 6 | fnmpt2i 6889 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1680 ax-4 1693 ax-5 1769 ax-6 1816 ax-7 1862 ax-8 1900 ax-9 1907 ax-10 1926 ax-11 1931 ax-12 1944 ax-13 2102 ax-ext 2442 ax-sep 4539 ax-nul 4548 ax-pow 4595 ax-pr 4653 ax-un 6610 |
This theorem depends on definitions: df-bi 190 df-or 376 df-an 377 df-3an 993 df-tru 1458 df-ex 1675 df-nf 1679 df-sb 1809 df-eu 2314 df-mo 2315 df-clab 2449 df-cleq 2455 df-clel 2458 df-nfc 2592 df-ne 2635 df-ral 2754 df-rex 2755 df-rab 2758 df-v 3059 df-sbc 3280 df-csb 3376 df-dif 3419 df-un 3421 df-in 3423 df-ss 3430 df-nul 3744 df-if 3894 df-pw 3965 df-sn 3981 df-pr 3983 df-op 3987 df-uni 4213 df-iun 4294 df-br 4417 df-opab 4476 df-mpt 4477 df-id 4768 df-xp 4859 df-rel 4860 df-cnv 4861 df-co 4862 df-dm 4863 df-rn 4864 df-res 4865 df-ima 4866 df-iota 5565 df-fun 5603 df-fn 5604 df-f 5605 df-fv 5609 df-oprab 6319 df-mpt2 6320 df-1st 6820 df-2nd 6821 df-pm 7501 |
This theorem is referenced by: elpmi 7516 pmresg 7525 pmsspw 7532 |
Copyright terms: Public domain | W3C validator |