MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnovrn Structured version   Unicode version

Theorem fnovrn 6237
Description: An operation's value belongs to its range. (Contributed by NM, 10-Feb-2007.)
Assertion
Ref Expression
fnovrn  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  A  /\  D  e.  B )  ->  ( C F D )  e.  ran  F
)

Proof of Theorem fnovrn
StepHypRef Expression
1 opelxpi 4867 . . 3  |-  ( ( C  e.  A  /\  D  e.  B )  -> 
<. C ,  D >.  e.  ( A  X.  B
) )
2 df-ov 6093 . . . 4  |-  ( C F D )  =  ( F `  <. C ,  D >. )
3 fnfvelrn 5837 . . . 4  |-  ( ( F  Fn  ( A  X.  B )  /\  <. C ,  D >.  e.  ( A  X.  B
) )  ->  ( F `  <. C ,  D >. )  e.  ran  F )
42, 3syl5eqel 2525 . . 3  |-  ( ( F  Fn  ( A  X.  B )  /\  <. C ,  D >.  e.  ( A  X.  B
) )  ->  ( C F D )  e. 
ran  F )
51, 4sylan2 471 . 2  |-  ( ( F  Fn  ( A  X.  B )  /\  ( C  e.  A  /\  D  e.  B
) )  ->  ( C F D )  e. 
ran  F )
653impb 1178 1  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  A  /\  D  e.  B )  ->  ( C F D )  e.  ran  F
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 960    e. wcel 1761   <.cop 3880    X. cxp 4834   ran crn 4837    Fn wfn 5410   ` cfv 5415  (class class class)co 6090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pr 4528
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-rab 2722  df-v 2972  df-sbc 3184  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-br 4290  df-opab 4348  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-iota 5378  df-fun 5417  df-fn 5418  df-fv 5423  df-ov 6093
This theorem is referenced by:  unirnioo  11385  ioorebas  11387  yonffthlem  15088  gsumval2a  15505  efginvrel2  16217  efgredleme  16233  efgcpbllemb  16245  mplsubrglem  17495  mplsubrglemOLD  17496  lecldbas  18782  blelrnps  19950  blelrn  19951  blssioo  20331  tgioo  20332  opnmbllem  21040  mbfdm  21065  mbfima  21069  isgrpo2  23619  tpr2rico  26278  dya2icoseg  26628  opnmbllem0  28352
  Copyright terms: Public domain W3C validator