MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnop Structured version   Unicode version

Theorem fnop 5684
Description: The first argument of an ordered pair in a function belongs to the function's domain. (Contributed by NM, 8-Aug-1994.)
Assertion
Ref Expression
fnop  |-  ( ( F  Fn  A  /\  <. B ,  C >.  e.  F )  ->  B  e.  A )

Proof of Theorem fnop
StepHypRef Expression
1 df-br 4448 . 2  |-  ( B F C  <->  <. B ,  C >.  e.  F )
2 fnbr 5683 . 2  |-  ( ( F  Fn  A  /\  B F C )  ->  B  e.  A )
31, 2sylan2br 476 1  |-  ( ( F  Fn  A  /\  <. B ,  C >.  e.  F )  ->  B  e.  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1767   <.cop 4033   class class class wbr 4447    Fn wfn 5583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-br 4448  df-opab 4506  df-xp 5005  df-rel 5006  df-dm 5009  df-fun 5590  df-fn 5591
This theorem is referenced by:  2elresin  5692  tfrlem9  7055  wfrlem12  29207  frrlem11  29252
  Copyright terms: Public domain W3C validator