MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnnfpeq0 Structured version   Unicode version

Theorem fnnfpeq0 5909
Description: A function is the identity iff it moves no points. (Contributed by Stefan O'Rear, 25-Aug-2015.)
Assertion
Ref Expression
fnnfpeq0  |-  ( F  Fn  A  ->  ( dom  ( F  \  _I  )  =  (/)  <->  F  =  (  _I  |`  A ) ) )

Proof of Theorem fnnfpeq0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 rabeq0 3659 . . 3  |-  ( { x  e.  A  | 
( F `  x
)  =/=  x }  =  (/)  <->  A. x  e.  A  -.  ( F `  x
)  =/=  x )
2 fvresi 5904 . . . . . . 7  |-  ( x  e.  A  ->  (
(  _I  |`  A ) `
 x )  =  x )
32eqeq2d 2454 . . . . . 6  |-  ( x  e.  A  ->  (
( F `  x
)  =  ( (  _I  |`  A ) `  x )  <->  ( F `  x )  =  x ) )
43adantl 466 . . . . 5  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( F `  x )  =  ( (  _I  |`  A ) `
 x )  <->  ( F `  x )  =  x ) )
5 nne 2612 . . . . 5  |-  ( -.  ( F `  x
)  =/=  x  <->  ( F `  x )  =  x )
64, 5syl6rbbr 264 . . . 4  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( -.  ( F `
 x )  =/=  x  <->  ( F `  x )  =  ( (  _I  |`  A ) `
 x ) ) )
76ralbidva 2731 . . 3  |-  ( F  Fn  A  ->  ( A. x  e.  A  -.  ( F `  x
)  =/=  x  <->  A. x  e.  A  ( F `  x )  =  ( (  _I  |`  A ) `
 x ) ) )
81, 7syl5bb 257 . 2  |-  ( F  Fn  A  ->  ( { x  e.  A  |  ( F `  x )  =/=  x }  =  (/)  <->  A. x  e.  A  ( F `  x )  =  ( (  _I  |`  A ) `
 x ) ) )
9 fndifnfp 5907 . . 3  |-  ( F  Fn  A  ->  dom  ( F  \  _I  )  =  { x  e.  A  |  ( F `  x )  =/=  x } )
109eqeq1d 2451 . 2  |-  ( F  Fn  A  ->  ( dom  ( F  \  _I  )  =  (/)  <->  { x  e.  A  |  ( F `  x )  =/=  x }  =  (/) ) )
11 fnresi 5528 . . 3  |-  (  _I  |`  A )  Fn  A
12 eqfnfv 5797 . . 3  |-  ( ( F  Fn  A  /\  (  _I  |`  A )  Fn  A )  -> 
( F  =  (  _I  |`  A )  <->  A. x  e.  A  ( F `  x )  =  ( (  _I  |`  A ) `  x
) ) )
1311, 12mpan2 671 . 2  |-  ( F  Fn  A  ->  ( F  =  (  _I  |`  A )  <->  A. x  e.  A  ( F `  x )  =  ( (  _I  |`  A ) `
 x ) ) )
148, 10, 133bitr4d 285 1  |-  ( F  Fn  A  ->  ( dom  ( F  \  _I  )  =  (/)  <->  F  =  (  _I  |`  A ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2606   A.wral 2715   {crab 2719    \ cdif 3325   (/)c0 3637    _I cid 4631   dom cdm 4840    |` cres 4842    Fn wfn 5413   ` cfv 5418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-br 4293  df-opab 4351  df-mpt 4352  df-id 4636  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-fv 5426
This theorem is referenced by:  symggen  15976  mdet1  18408  m1detdiag  30934  mdetdiaglem  30935
  Copyright terms: Public domain W3C validator