MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fniunfv Unicode version

Theorem fniunfv 5625
Description: The indexed union of a function's values is the union of its range. Compare Definition 5.4 of [Monk1] p. 50. (Contributed by NM, 27-Sep-2004.)
Assertion
Ref Expression
fniunfv  |-  ( F  Fn  A  ->  U_ x  e.  A  ( F `  x )  =  U. ran  F )
Distinct variable groups:    x, A    x, F

Proof of Theorem fniunfv
StepHypRef Expression
1 fnrnfv 5421 . . 3  |-  ( F  Fn  A  ->  ran  F  =  { y  |  E. x  e.  A  y  =  ( F `  x ) } )
21unieqd 3738 . 2  |-  ( F  Fn  A  ->  U. ran  F  =  U. { y  |  E. x  e.  A  y  =  ( F `  x ) } )
3 fvex 5391 . . 3  |-  ( F `
 x )  e. 
_V
43dfiun2 3835 . 2  |-  U_ x  e.  A  ( F `  x )  =  U. { y  |  E. x  e.  A  y  =  ( F `  x ) }
52, 4syl6reqr 2304 1  |-  ( F  Fn  A  ->  U_ x  e.  A  ( F `  x )  =  U. ran  F )
Colors of variables: wff set class
Syntax hints:    -> wi 6    = wceq 1619   {cab 2239   E.wrex 2510   U.cuni 3727   U_ciun 3803   ran crn 4581    Fn wfn 4587   ` cfv 4592
This theorem is referenced by:  funiunfv  5626  dffi3  7068  marypha2  7076  jech9.3  7370  hsmexlem5  7940  wuncval2  8249  dprdspan  15097  tgcmp  16960  txcmplem1  17167  txcmplem2  17168  xkococnlem  17185  alexsubALT  17577  bcth3  18585  ovolfioo  18659  ovolficc  18660  voliunlem2  18740  voliunlem3  18741  volsup  18745  uniiccdif  18765  uniioovol  18766  uniiccvol  18767  uniioombllem2  18770  uniioombllem4  18773  volsup2  18792  itg1climres  18901  itg2monolem1  18937  itg2gt0  18947  dftrpred2  23390  sallnei  24695  hbt  26500
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-sbc 2922  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-fv 4608
  Copyright terms: Public domain W3C validator