MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fniinfv Unicode version

Theorem fniinfv 5744
Description: The indexed intersection of a function's values is the intersection of its range. (Contributed by NM, 20-Oct-2005.)
Assertion
Ref Expression
fniinfv  |-  ( F  Fn  A  ->  |^|_ x  e.  A  ( F `  x )  =  |^| ran 
F )
Distinct variable groups:    x, A    x, F

Proof of Theorem fniinfv
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fnrnfv 5732 . . 3  |-  ( F  Fn  A  ->  ran  F  =  { y  |  E. x  e.  A  y  =  ( F `  x ) } )
21inteqd 4015 . 2  |-  ( F  Fn  A  ->  |^| ran  F  =  |^| { y  |  E. x  e.  A  y  =  ( F `  x ) } )
3 fvex 5701 . . 3  |-  ( F `
 x )  e. 
_V
43dfiin2 4086 . 2  |-  |^|_ x  e.  A  ( F `  x )  =  |^| { y  |  E. x  e.  A  y  =  ( F `  x ) }
52, 4syl6reqr 2455 1  |-  ( F  Fn  A  ->  |^|_ x  e.  A  ( F `  x )  =  |^| ran 
F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649   {cab 2390   E.wrex 2667   |^|cint 4010   |^|_ciin 4054   ran crn 4838    Fn wfn 5408   ` cfv 5413
This theorem is referenced by:  firest  13615  pnrmopn  17361  txtube  17625  bcth3  19237  imaiinfv  26630  diaintclN  31541  dibintclN  31650  dihintcl  31827
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-int 4011  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-iota 5377  df-fun 5415  df-fn 5416  df-fv 5421
  Copyright terms: Public domain W3C validator