Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fniinfv Structured version   Visualization version   Unicode version

Theorem fniinfv 5939
 Description: The indexed intersection of a function's values is the intersection of its range. (Contributed by NM, 20-Oct-2005.)
Assertion
Ref Expression
fniinfv
Distinct variable groups:   ,   ,

Proof of Theorem fniinfv
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 fnrnfv 5925 . . 3
21inteqd 4231 . 2
3 fvex 5889 . . 3
43dfiin2 4304 . 2
52, 4syl6reqr 2524 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wceq 1452  cab 2457  wrex 2757  cint 4226  ciin 4270   crn 4840   wfn 5584  cfv 5589 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pr 4639 This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-sbc 3256  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-int 4227  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-iota 5553  df-fun 5591  df-fn 5592  df-fv 5597 This theorem is referenced by:  firest  15409  pnrmopn  20436  txtube  20732  bcth3  22377  diaintclN  34697  dibintclN  34806  dihintcl  34983  imaiinfv  35606
 Copyright terms: Public domain W3C validator