MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fniinfv Structured version   Unicode version

Theorem fniinfv 5937
Description: The indexed intersection of a function's values is the intersection of its range. (Contributed by NM, 20-Oct-2005.)
Assertion
Ref Expression
fniinfv  |-  ( F  Fn  A  ->  |^|_ x  e.  A  ( F `  x )  =  |^| ran 
F )
Distinct variable groups:    x, A    x, F

Proof of Theorem fniinfv
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fnrnfv 5924 . . 3  |-  ( F  Fn  A  ->  ran  F  =  { y  |  E. x  e.  A  y  =  ( F `  x ) } )
21inteqd 4257 . 2  |-  ( F  Fn  A  ->  |^| ran  F  =  |^| { y  |  E. x  e.  A  y  =  ( F `  x ) } )
3 fvex 5888 . . 3  |-  ( F `
 x )  e. 
_V
43dfiin2 4331 . 2  |-  |^|_ x  e.  A  ( F `  x )  =  |^| { y  |  E. x  e.  A  y  =  ( F `  x ) }
52, 4syl6reqr 2482 1  |-  ( F  Fn  A  ->  |^|_ x  e.  A  ( F `  x )  =  |^| ran 
F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1437   {cab 2407   E.wrex 2776   |^|cint 4252   |^|_ciin 4297   ran crn 4851    Fn wfn 5593   ` cfv 5598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-sep 4543  ax-nul 4552  ax-pr 4657
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-ral 2780  df-rex 2781  df-rab 2784  df-v 3083  df-sbc 3300  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3910  df-sn 3997  df-pr 3999  df-op 4003  df-uni 4217  df-int 4253  df-iin 4299  df-br 4421  df-opab 4480  df-mpt 4481  df-id 4765  df-xp 4856  df-rel 4857  df-cnv 4858  df-co 4859  df-dm 4860  df-rn 4861  df-iota 5562  df-fun 5600  df-fn 5601  df-fv 5606
This theorem is referenced by:  firest  15319  pnrmopn  20346  txtube  20642  bcth3  22286  diaintclN  34545  dibintclN  34654  dihintcl  34831  imaiinfv  35454
  Copyright terms: Public domain W3C validator