MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fngid Structured version   Visualization version   Unicode version

Theorem fngid 26023
Description: GId is a function. (Contributed by FL, 5-Feb-2010.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
fngid  |- GId  Fn  _V

Proof of Theorem fngid
Dummy variables  u  g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 riotaex 6274 . 2  |-  ( iota_ u  e.  ran  g A. x  e.  ran  g ( ( u g x )  =  x  /\  ( x g u )  =  x ) )  e.  _V
2 df-gid 26001 . 2  |- GId  =  ( g  e.  _V  |->  (
iota_ u  e.  ran  g A. x  e.  ran  g ( ( u g x )  =  x  /\  ( x g u )  =  x ) ) )
31, 2fnmpti 5716 1  |- GId  Fn  _V
Colors of variables: wff setvar class
Syntax hints:    /\ wa 376    = wceq 1452   A.wral 2756   _Vcvv 3031   ran crn 4840    Fn wfn 5584   iota_crio 6269  (class class class)co 6308  GIdcgi 25996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pr 4639
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-sbc 3256  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-iota 5553  df-fun 5591  df-fn 5592  df-riota 6270  df-gid 26001
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator