MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnfvrnss Structured version   Unicode version

Theorem fnfvrnss 6040
Description: An upper bound for range determined by function values. (Contributed by NM, 8-Oct-2004.)
Assertion
Ref Expression
fnfvrnss  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B )  ->  ran  F  C_  B )
Distinct variable groups:    x, A    x, B    x, F

Proof of Theorem fnfvrnss
StepHypRef Expression
1 ffnfv 6038 . 2  |-  ( F : A --> B  <->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B
) )
2 frn 5723 . 2  |-  ( F : A --> B  ->  ran  F  C_  B )
31, 2sylbir 213 1  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B )  ->  ran  F  C_  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1802   A.wral 2791    C_ wss 3458   ran crn 4986    Fn wfn 5569   -->wf 5570   ` cfv 5574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-sep 4554  ax-nul 4562  ax-pr 4672
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-ral 2796  df-rex 2797  df-rab 2800  df-v 3095  df-sbc 3312  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-nul 3768  df-if 3923  df-sn 4011  df-pr 4013  df-op 4017  df-uni 4231  df-br 4434  df-opab 4492  df-mpt 4493  df-id 4781  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-fv 5582
This theorem is referenced by:  ffvresb  6043  dffi3  7889  infxpenlem  8389  alephsing  8654  mplind  18035  1stckgenlem  19920  psmetxrge0  20683  plyreres  22544  aannenlem1  22589  rmulccn  27776  esumfsup  27942  sxbrsigalem3  28109  sitgf  28155  dirkercncflem2  31771  fourierdlem15  31789  fourierdlem42  31816  dihf11lem  36695  hdmaprnN  37296  hgmaprnN  37333
  Copyright terms: Public domain W3C validator