MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnfi Structured version   Unicode version

Theorem fnfi 7794
Description: A version of fnex 6125 for finite sets that does not require Replacement. (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
fnfi  |-  ( ( F  Fn  A  /\  A  e.  Fin )  ->  F  e.  Fin )

Proof of Theorem fnfi
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnresdm 5688 . . 3  |-  ( F  Fn  A  ->  ( F  |`  A )  =  F )
21adantr 465 . 2  |-  ( ( F  Fn  A  /\  A  e.  Fin )  ->  ( F  |`  A )  =  F )
3 reseq2 5266 . . . . . 6  |-  ( x  =  (/)  ->  ( F  |`  x )  =  ( F  |`  (/) ) )
43eleq1d 2536 . . . . 5  |-  ( x  =  (/)  ->  ( ( F  |`  x )  e.  Fin  <->  ( F  |`  (/) )  e.  Fin )
)
54imbi2d 316 . . . 4  |-  ( x  =  (/)  ->  ( ( ( F  Fn  A  /\  A  e.  Fin )  ->  ( F  |`  x )  e.  Fin ) 
<->  ( ( F  Fn  A  /\  A  e.  Fin )  ->  ( F  |`  (/) )  e.  Fin )
) )
6 reseq2 5266 . . . . . 6  |-  ( x  =  y  ->  ( F  |`  x )  =  ( F  |`  y
) )
76eleq1d 2536 . . . . 5  |-  ( x  =  y  ->  (
( F  |`  x
)  e.  Fin  <->  ( F  |`  y )  e.  Fin ) )
87imbi2d 316 . . . 4  |-  ( x  =  y  ->  (
( ( F  Fn  A  /\  A  e.  Fin )  ->  ( F  |`  x )  e.  Fin ) 
<->  ( ( F  Fn  A  /\  A  e.  Fin )  ->  ( F  |`  y )  e.  Fin ) ) )
9 reseq2 5266 . . . . . 6  |-  ( x  =  ( y  u. 
{ z } )  ->  ( F  |`  x )  =  ( F  |`  ( y  u.  { z } ) ) )
109eleq1d 2536 . . . . 5  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( F  |`  x )  e.  Fin  <->  ( F  |`  ( y  u. 
{ z } ) )  e.  Fin )
)
1110imbi2d 316 . . . 4  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( ( F  Fn  A  /\  A  e.  Fin )  ->  ( F  |`  x
)  e.  Fin )  <->  ( ( F  Fn  A  /\  A  e.  Fin )  ->  ( F  |`  ( y  u.  {
z } ) )  e.  Fin ) ) )
12 reseq2 5266 . . . . . 6  |-  ( x  =  A  ->  ( F  |`  x )  =  ( F  |`  A ) )
1312eleq1d 2536 . . . . 5  |-  ( x  =  A  ->  (
( F  |`  x
)  e.  Fin  <->  ( F  |`  A )  e.  Fin ) )
1413imbi2d 316 . . . 4  |-  ( x  =  A  ->  (
( ( F  Fn  A  /\  A  e.  Fin )  ->  ( F  |`  x )  e.  Fin ) 
<->  ( ( F  Fn  A  /\  A  e.  Fin )  ->  ( F  |`  A )  e.  Fin ) ) )
15 res0 5276 . . . . . 6  |-  ( F  |`  (/) )  =  (/)
16 0fin 7744 . . . . . 6  |-  (/)  e.  Fin
1715, 16eqeltri 2551 . . . . 5  |-  ( F  |`  (/) )  e.  Fin
1817a1i 11 . . . 4  |-  ( ( F  Fn  A  /\  A  e.  Fin )  ->  ( F  |`  (/) )  e. 
Fin )
19 resundi 5285 . . . . . . . 8  |-  ( F  |`  ( y  u.  {
z } ) )  =  ( ( F  |`  y )  u.  ( F  |`  { z } ) )
20 snfi 7593 . . . . . . . . . 10  |-  { <. z ,  ( F `  z ) >. }  e.  Fin
21 fnfun 5676 . . . . . . . . . . . 12  |-  ( F  Fn  A  ->  Fun  F )
22 funressn 6072 . . . . . . . . . . . 12  |-  ( Fun 
F  ->  ( F  |` 
{ z } ) 
C_  { <. z ,  ( F `  z ) >. } )
2321, 22syl 16 . . . . . . . . . . 11  |-  ( F  Fn  A  ->  ( F  |`  { z } )  C_  { <. z ,  ( F `  z ) >. } )
2423adantr 465 . . . . . . . . . 10  |-  ( ( F  Fn  A  /\  A  e.  Fin )  ->  ( F  |`  { z } )  C_  { <. z ,  ( F `  z ) >. } )
25 ssfi 7737 . . . . . . . . . 10  |-  ( ( { <. z ,  ( F `  z )
>. }  e.  Fin  /\  ( F  |`  { z } )  C_  { <. z ,  ( F `  z ) >. } )  ->  ( F  |`  { z } )  e.  Fin )
2620, 24, 25sylancr 663 . . . . . . . . 9  |-  ( ( F  Fn  A  /\  A  e.  Fin )  ->  ( F  |`  { z } )  e.  Fin )
27 unfi 7783 . . . . . . . . 9  |-  ( ( ( F  |`  y
)  e.  Fin  /\  ( F  |`  { z } )  e.  Fin )  ->  ( ( F  |`  y )  u.  ( F  |`  { z } ) )  e.  Fin )
2826, 27sylan2 474 . . . . . . . 8  |-  ( ( ( F  |`  y
)  e.  Fin  /\  ( F  Fn  A  /\  A  e.  Fin ) )  ->  (
( F  |`  y
)  u.  ( F  |`  { z } ) )  e.  Fin )
2919, 28syl5eqel 2559 . . . . . . 7  |-  ( ( ( F  |`  y
)  e.  Fin  /\  ( F  Fn  A  /\  A  e.  Fin ) )  ->  ( F  |`  ( y  u. 
{ z } ) )  e.  Fin )
3029expcom 435 . . . . . 6  |-  ( ( F  Fn  A  /\  A  e.  Fin )  ->  ( ( F  |`  y )  e.  Fin  ->  ( F  |`  (
y  u.  { z } ) )  e. 
Fin ) )
3130a2i 13 . . . . 5  |-  ( ( ( F  Fn  A  /\  A  e.  Fin )  ->  ( F  |`  y )  e.  Fin )  ->  ( ( F  Fn  A  /\  A  e.  Fin )  ->  ( F  |`  ( y  u. 
{ z } ) )  e.  Fin )
)
3231a1i 11 . . . 4  |-  ( y  e.  Fin  ->  (
( ( F  Fn  A  /\  A  e.  Fin )  ->  ( F  |`  y )  e.  Fin )  ->  ( ( F  Fn  A  /\  A  e.  Fin )  ->  ( F  |`  ( y  u. 
{ z } ) )  e.  Fin )
) )
335, 8, 11, 14, 18, 32findcard2 7756 . . 3  |-  ( A  e.  Fin  ->  (
( F  Fn  A  /\  A  e.  Fin )  ->  ( F  |`  A )  e.  Fin ) )
3433anabsi7 817 . 2  |-  ( ( F  Fn  A  /\  A  e.  Fin )  ->  ( F  |`  A )  e.  Fin )
352, 34eqeltrrd 2556 1  |-  ( ( F  Fn  A  /\  A  e.  Fin )  ->  F  e.  Fin )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767    u. cun 3474    C_ wss 3476   (/)c0 3785   {csn 4027   <.cop 4033    |` cres 5001   Fun wfun 5580    Fn wfn 5581   ` cfv 5586   Fincfn 7513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-er 7308  df-en 7514  df-fin 7517
This theorem is referenced by:  unirnffid  7808  mptfi  7815  seqf1olem2  12110  seqf1o  12111  hashfzdm  12458  hashfirdm  12460  iswrd  12510  wrdfin  12521  isstruct2  14492  xpsfrnel  14811  psgnran  16333  usgrafilem2  24085  ftc1anclem3  29667  sstotbnd2  29871  prdstotbnd  29891  ffi  31028  stoweidlem59  31359  fourierdlem42  31449  fourierdlem54  31461  resfnfinfin  31779  fundmfibi  31780
  Copyright terms: Public domain W3C validator