MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fneqeql2 Structured version   Unicode version

Theorem fneqeql2 5833
Description: Two functions are equal iff their equalizer contains the whole domain. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Assertion
Ref Expression
fneqeql2  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <-> 
A  C_  dom  ( F  i^i  G ) ) )

Proof of Theorem fneqeql2
StepHypRef Expression
1 fneqeql 5832 . 2  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <->  dom  ( F  i^i  G
)  =  A ) )
2 inss1 3591 . . . . . 6  |-  ( F  i^i  G )  C_  F
3 dmss 5060 . . . . . 6  |-  ( ( F  i^i  G ) 
C_  F  ->  dom  ( F  i^i  G ) 
C_  dom  F )
42, 3ax-mp 5 . . . . 5  |-  dom  ( F  i^i  G )  C_  dom  F
5 fndm 5531 . . . . . 6  |-  ( F  Fn  A  ->  dom  F  =  A )
65adantr 465 . . . . 5  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  F  =  A )
74, 6syl5sseq 3425 . . . 4  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  ( F  i^i  G )  C_  A )
87biantrurd 508 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( A  C_  dom  ( F  i^i  G )  <-> 
( dom  ( F  i^i  G )  C_  A  /\  A  C_  dom  ( F  i^i  G ) ) ) )
9 eqss 3392 . . 3  |-  ( dom  ( F  i^i  G
)  =  A  <->  ( dom  ( F  i^i  G ) 
C_  A  /\  A  C_ 
dom  ( F  i^i  G ) ) )
108, 9syl6rbbr 264 . 2  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( dom  ( F  i^i  G )  =  A  <->  A  C_  dom  ( F  i^i  G ) ) )
111, 10bitrd 253 1  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <-> 
A  C_  dom  ( F  i^i  G ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    i^i cin 3348    C_ wss 3349   dom cdm 4861    Fn wfn 5434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2741  df-rex 2742  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-nul 3659  df-if 3813  df-sn 3899  df-pr 3901  df-op 3905  df-uni 4113  df-br 4314  df-opab 4372  df-mpt 4373  df-id 4657  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-fv 5447
This theorem is referenced by:  evlseu  17624  hauseqcn  26347
  Copyright terms: Public domain W3C validator