Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnemeet2 Structured version   Unicode version

Theorem fnemeet2 28588
Description: The meet of equivalence classes under the fineness relation-part two. (Contributed by Jeff Hankins, 6-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
fnemeet2  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( T Fne ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) )  <->  ( X  =  U. T  /\  A. x  e.  S  T Fne x ) ) )
Distinct variable groups:    y, t, x, S    t, V, x   
t, X, x, y   
t, T, x
Allowed substitution hints:    T( y)    V( y)

Proof of Theorem fnemeet2
StepHypRef Expression
1 riin0 4244 . . . . . . . . . 10  |-  ( S  =  (/)  ->  ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) )  =  ~P X )
21unieqd 4101 . . . . . . . . 9  |-  ( S  =  (/)  ->  U. ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) )  = 
U. ~P X )
3 unipw 4542 . . . . . . . . 9  |-  U. ~P X  =  X
42, 3syl6req 2492 . . . . . . . 8  |-  ( S  =  (/)  ->  X  = 
U. ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t )
) )
54a1i 11 . . . . . . 7  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( S  =  (/)  ->  X  =  U. ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) ) ) )
6 n0 3646 . . . . . . . 8  |-  ( S  =/=  (/)  <->  E. x  x  e.  S )
7 unieq 4099 . . . . . . . . . . . . . 14  |-  ( y  =  x  ->  U. y  =  U. x )
87eqeq2d 2454 . . . . . . . . . . . . 13  |-  ( y  =  x  ->  ( X  =  U. y  <->  X  =  U. x ) )
98rspccva 3072 . . . . . . . . . . . 12  |-  ( ( A. y  e.  S  X  =  U. y  /\  x  e.  S
)  ->  X  =  U. x )
1093adant1 1006 . . . . . . . . . . 11  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  x  e.  S )  ->  X  =  U. x )
11 fnemeet1 28587 . . . . . . . . . . . 12  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  x  e.  S )  ->  ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) ) Fne x )
12 eqid 2443 . . . . . . . . . . . . 13  |-  U. ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) )  = 
U. ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t )
)
13 eqid 2443 . . . . . . . . . . . . 13  |-  U. x  =  U. x
1412, 13fnebas 28545 . . . . . . . . . . . 12  |-  ( ( ~P X  i^i  |^|_ t  e.  S  ( topGen `
 t ) ) Fne x  ->  U. ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) )  = 
U. x )
1511, 14syl 16 . . . . . . . . . . 11  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  x  e.  S )  ->  U. ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) )  = 
U. x )
1610, 15eqtr4d 2478 . . . . . . . . . 10  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  x  e.  S )  ->  X  =  U. ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t )
) )
17163expia 1189 . . . . . . . . 9  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( x  e.  S  ->  X  =  U. ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) ) ) )
1817exlimdv 1690 . . . . . . . 8  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( E. x  x  e.  S  ->  X  =  U. ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t )
) ) )
196, 18syl5bi 217 . . . . . . 7  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( S  =/=  (/)  ->  X  =  U. ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t )
) ) )
205, 19pm2.61dne 2688 . . . . . 6  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  ->  X  =  U. ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) ) )
2120adantr 465 . . . . 5  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  T Fne ( ~P X  i^i  |^|_ t  e.  S  ( topGen `
 t ) ) )  ->  X  =  U. ( ~P X  i^i  |^|_ t  e.  S  (
topGen `  t ) ) )
22 eqid 2443 . . . . . . 7  |-  U. T  =  U. T
2322, 12fnebas 28545 . . . . . 6  |-  ( T Fne ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t )
)  ->  U. T  = 
U. ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t )
) )
2423adantl 466 . . . . 5  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  T Fne ( ~P X  i^i  |^|_ t  e.  S  ( topGen `
 t ) ) )  ->  U. T  = 
U. ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t )
) )
2521, 24eqtr4d 2478 . . . 4  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  T Fne ( ~P X  i^i  |^|_ t  e.  S  ( topGen `
 t ) ) )  ->  X  =  U. T )
2625ex 434 . . 3  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( T Fne ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) )  ->  X  =  U. T ) )
27 fnetr 28558 . . . . . . 7  |-  ( ( T Fne ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) )  /\  ( ~P X  i^i  |^|_ t  e.  S  ( topGen `
 t ) ) Fne x )  ->  T Fne x )
2827expcom 435 . . . . . 6  |-  ( ( ~P X  i^i  |^|_ t  e.  S  ( topGen `
 t ) ) Fne x  ->  ( T Fne ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t )
)  ->  T Fne x ) )
2911, 28syl 16 . . . . 5  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  x  e.  S )  ->  ( T Fne ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t )
)  ->  T Fne x ) )
30293expa 1187 . . . 4  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  x  e.  S )  ->  ( T Fne ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t )
)  ->  T Fne x ) )
3130ralrimdva 2806 . . 3  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( T Fne ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) )  ->  A. x  e.  S  T Fne x ) )
3226, 31jcad 533 . 2  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( T Fne ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) )  -> 
( X  =  U. T  /\  A. x  e.  S  T Fne x
) ) )
33 simprl 755 . . . . 5  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  T Fne x ) )  ->  X  =  U. T )
3420adantr 465 . . . . 5  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  T Fne x ) )  ->  X  =  U. ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) ) )
3533, 34eqtr3d 2477 . . . 4  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  T Fne x ) )  ->  U. T  =  U. ( ~P X  i^i  |^|_ t  e.  S  ( topGen `
 t ) ) )
36 eqimss2 3409 . . . . . . . 8  |-  ( X  =  U. T  ->  U. T  C_  X )
3736ad2antrl 727 . . . . . . 7  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  T Fne x ) )  ->  U. T  C_  X )
38 sspwuni 4256 . . . . . . 7  |-  ( T 
C_  ~P X  <->  U. T  C_  X )
3937, 38sylibr 212 . . . . . 6  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  T Fne x ) )  ->  T  C_  ~P X )
40 breq2 4296 . . . . . . . . . 10  |-  ( x  =  t  ->  ( T Fne x  <->  T Fne t ) )
4140cbvralv 2947 . . . . . . . . 9  |-  ( A. x  e.  S  T Fne x  <->  A. t  e.  S  T Fne t )
42 fnetg 28546 . . . . . . . . . 10  |-  ( T Fne t  ->  T  C_  ( topGen `  t )
)
4342ralimi 2791 . . . . . . . . 9  |-  ( A. t  e.  S  T Fne t  ->  A. t  e.  S  T  C_  ( topGen `
 t ) )
4441, 43sylbi 195 . . . . . . . 8  |-  ( A. x  e.  S  T Fne x  ->  A. t  e.  S  T  C_  ( topGen `
 t ) )
4544ad2antll 728 . . . . . . 7  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  T Fne x ) )  ->  A. t  e.  S  T  C_  ( topGen `  t
) )
46 ssiin 4220 . . . . . . 7  |-  ( T 
C_  |^|_ t  e.  S  ( topGen `  t )  <->  A. t  e.  S  T  C_  ( topGen `  t )
)
4745, 46sylibr 212 . . . . . 6  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  T Fne x ) )  ->  T  C_  |^|_ t  e.  S  ( topGen `  t )
)
4839, 47ssind 3574 . . . . 5  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  T Fne x ) )  ->  T  C_  ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t )
) )
49 pwexg 4476 . . . . . . . 8  |-  ( X  e.  V  ->  ~P X  e.  _V )
50 inex1g 4435 . . . . . . . 8  |-  ( ~P X  e.  _V  ->  ( ~P X  i^i  |^|_ t  e.  S  ( topGen `
 t ) )  e.  _V )
5149, 50syl 16 . . . . . . 7  |-  ( X  e.  V  ->  ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) )  e. 
_V )
5251ad2antrr 725 . . . . . 6  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  T Fne x ) )  -> 
( ~P X  i^i  |^|_ t  e.  S  (
topGen `  t ) )  e.  _V )
53 bastg 18571 . . . . . 6  |-  ( ( ~P X  i^i  |^|_ t  e.  S  ( topGen `
 t ) )  e.  _V  ->  ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) )  C_  ( topGen `  ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t )
) ) )
5452, 53syl 16 . . . . 5  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  T Fne x ) )  -> 
( ~P X  i^i  |^|_ t  e.  S  (
topGen `  t ) ) 
C_  ( topGen `  ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) ) ) )
5548, 54sstrd 3366 . . . 4  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  T Fne x ) )  ->  T  C_  ( topGen `  ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) ) ) )
5622, 12isfne4 28541 . . . 4  |-  ( T Fne ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t )
)  <->  ( U. T  =  U. ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t )
)  /\  T  C_  ( topGen `
 ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t )
) ) ) )
5735, 55, 56sylanbrc 664 . . 3  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  T Fne x ) )  ->  T Fne ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t )
) )
5857ex 434 . 2  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( ( X  = 
U. T  /\  A. x  e.  S  T Fne x )  ->  T Fne ( ~P X  i^i  |^|_ t  e.  S  (
topGen `  t ) ) ) )
5932, 58impbid 191 1  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( T Fne ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) )  <->  ( X  =  U. T  /\  A. x  e.  S  T Fne x ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369   E.wex 1586    e. wcel 1756    =/= wne 2606   A.wral 2715   _Vcvv 2972    i^i cin 3327    C_ wss 3328   (/)c0 3637   ~Pcpw 3860   U.cuni 4091   |^|_ciin 4172   class class class wbr 4292   ` cfv 5418   topGenctg 14376   Fnecfne 28531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-rab 2724  df-v 2974  df-sbc 3187  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-iun 4173  df-iin 4174  df-br 4293  df-opab 4351  df-mpt 4352  df-id 4636  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-iota 5381  df-fun 5420  df-fv 5426  df-topgen 14382  df-fne 28535
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator