Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnemeet1 Structured version   Unicode version

Theorem fnemeet1 28599
Description: The meet of a collection of equivalence classes of covers with respect to fineness. (Contributed by Jeff Hankins, 5-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
fnemeet1  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) ) Fne A )
Distinct variable groups:    y, t, A    t, S, y    t, V    t, X, y
Allowed substitution hint:    V( y)

Proof of Theorem fnemeet1
StepHypRef Expression
1 unitg 18584 . . . . . . . 8  |-  ( t  e.  S  ->  U. ( topGen `
 t )  = 
U. t )
21adantl 466 . . . . . . 7  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S
)  /\  t  e.  S )  ->  U. ( topGen `
 t )  = 
U. t )
3 unieq 4111 . . . . . . . . . 10  |-  ( y  =  t  ->  U. y  =  U. t )
43eqeq2d 2454 . . . . . . . . 9  |-  ( y  =  t  ->  ( X  =  U. y  <->  X  =  U. t ) )
54rspccva 3084 . . . . . . . 8  |-  ( ( A. y  e.  S  X  =  U. y  /\  t  e.  S
)  ->  X  =  U. t )
653ad2antl2 1151 . . . . . . 7  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S
)  /\  t  e.  S )  ->  X  =  U. t )
72, 6eqtr4d 2478 . . . . . 6  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S
)  /\  t  e.  S )  ->  U. ( topGen `
 t )  =  X )
8 eqimss 3420 . . . . . 6  |-  ( U. ( topGen `  t )  =  X  ->  U. ( topGen `
 t )  C_  X )
97, 8syl 16 . . . . 5  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S
)  /\  t  e.  S )  ->  U. ( topGen `
 t )  C_  X )
10 sspwuni 4268 . . . . 5  |-  ( (
topGen `  t )  C_  ~P X  <->  U. ( topGen `  t
)  C_  X )
119, 10sylibr 212 . . . 4  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S
)  /\  t  e.  S )  ->  ( topGen `
 t )  C_  ~P X )
1211ralrimiva 2811 . . 3  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  A. t  e.  S  ( topGen `  t )  C_  ~P X )
13 ne0i 3655 . . . 4  |-  ( A  e.  S  ->  S  =/=  (/) )
14133ad2ant3 1011 . . 3  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  S  =/=  (/) )
15 riinn0 4257 . . 3  |-  ( ( A. t  e.  S  ( topGen `  t )  C_ 
~P X  /\  S  =/=  (/) )  ->  ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) )  = 
|^|_ t  e.  S  ( topGen `  t )
)
1612, 14, 15syl2anc 661 . 2  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) )  = 
|^|_ t  e.  S  ( topGen `  t )
)
17 simp3 990 . . . . . . . 8  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  A  e.  S )
18 ssid 3387 . . . . . . . 8  |-  ( topGen `  A )  C_  ( topGen `
 A )
19 fveq2 5703 . . . . . . . . . 10  |-  ( t  =  A  ->  ( topGen `
 t )  =  ( topGen `  A )
)
2019sseq1d 3395 . . . . . . . . 9  |-  ( t  =  A  ->  (
( topGen `  t )  C_  ( topGen `  A )  <->  (
topGen `  A )  C_  ( topGen `  A )
) )
2120rspcev 3085 . . . . . . . 8  |-  ( ( A  e.  S  /\  ( topGen `  A )  C_  ( topGen `  A )
)  ->  E. t  e.  S  ( topGen `  t )  C_  ( topGen `
 A ) )
2217, 18, 21sylancl 662 . . . . . . 7  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  E. t  e.  S  ( topGen `  t )  C_  ( topGen `
 A ) )
23 iinss 4233 . . . . . . 7  |-  ( E. t  e.  S  (
topGen `  t )  C_  ( topGen `  A )  -> 
|^|_ t  e.  S  ( topGen `  t )  C_  ( topGen `  A )
)
2422, 23syl 16 . . . . . 6  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  |^|_ t  e.  S  ( topGen `  t )  C_  ( topGen `
 A ) )
2524unissd 4127 . . . . 5  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  U. |^|_ t  e.  S  ( topGen `
 t )  C_  U. ( topGen `  A )
)
26 unitg 18584 . . . . . 6  |-  ( A  e.  S  ->  U. ( topGen `
 A )  = 
U. A )
27263ad2ant3 1011 . . . . 5  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  U. ( topGen `
 A )  = 
U. A )
2825, 27sseqtrd 3404 . . . 4  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  U. |^|_ t  e.  S  ( topGen `
 t )  C_  U. A )
29 unieq 4111 . . . . . . . . . . . . 13  |-  ( y  =  A  ->  U. y  =  U. A )
3029eqeq2d 2454 . . . . . . . . . . . 12  |-  ( y  =  A  ->  ( X  =  U. y  <->  X  =  U. A ) )
3130rspccva 3084 . . . . . . . . . . 11  |-  ( ( A. y  e.  S  X  =  U. y  /\  A  e.  S
)  ->  X  =  U. A )
32313adant1 1006 . . . . . . . . . 10  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  X  =  U. A )
3332adantr 465 . . . . . . . . 9  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S
)  /\  t  e.  S )  ->  X  =  U. A )
3433, 6eqtr3d 2477 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S
)  /\  t  e.  S )  ->  U. A  =  U. t )
35 simpr 461 . . . . . . . . 9  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S
)  /\  t  e.  S )  ->  t  e.  S )
36 ssid 3387 . . . . . . . . 9  |-  t  C_  t
37 eltg3i 18578 . . . . . . . . 9  |-  ( ( t  e.  S  /\  t  C_  t )  ->  U. t  e.  ( topGen `
 t ) )
3835, 36, 37sylancl 662 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S
)  /\  t  e.  S )  ->  U. t  e.  ( topGen `  t )
)
3934, 38eqeltrd 2517 . . . . . . 7  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S
)  /\  t  e.  S )  ->  U. A  e.  ( topGen `  t )
)
4039ralrimiva 2811 . . . . . 6  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  A. t  e.  S  U. A  e.  ( topGen `  t )
)
41 uniexg 6389 . . . . . . . 8  |-  ( A  e.  S  ->  U. A  e.  _V )
42413ad2ant3 1011 . . . . . . 7  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  U. A  e.  _V )
43 eliin 4188 . . . . . . 7  |-  ( U. A  e.  _V  ->  ( U. A  e.  |^|_ t  e.  S  ( topGen `
 t )  <->  A. t  e.  S  U. A  e.  ( topGen `  t )
) )
4442, 43syl 16 . . . . . 6  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  ( U. A  e.  |^|_ t  e.  S  ( topGen `  t )  <->  A. t  e.  S  U. A  e.  ( topGen `  t )
) )
4540, 44mpbird 232 . . . . 5  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  U. A  e.  |^|_ t  e.  S  ( topGen `  t )
)
46 elssuni 4133 . . . . 5  |-  ( U. A  e.  |^|_ t  e.  S  ( topGen `  t
)  ->  U. A  C_  U.
|^|_ t  e.  S  ( topGen `  t )
)
4745, 46syl 16 . . . 4  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  U. A  C_ 
U. |^|_ t  e.  S  ( topGen `  t )
)
4828, 47eqssd 3385 . . 3  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  U. |^|_ t  e.  S  ( topGen `
 t )  = 
U. A )
49 eqid 2443 . . . 4  |-  U. |^|_ t  e.  S  ( topGen `
 t )  = 
U. |^|_ t  e.  S  ( topGen `  t )
50 eqid 2443 . . . 4  |-  U. A  =  U. A
5149, 50isfne4 28553 . . 3  |-  ( |^|_ t  e.  S  ( topGen `
 t ) Fne A  <->  ( U. |^|_ t  e.  S  ( topGen `
 t )  = 
U. A  /\  |^|_ t  e.  S  ( topGen `
 t )  C_  ( topGen `  A )
) )
5248, 24, 51sylanbrc 664 . 2  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  |^|_ t  e.  S  ( topGen `  t ) Fne A
)
5316, 52eqbrtrd 4324 1  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) ) Fne A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2618   A.wral 2727   E.wrex 2728   _Vcvv 2984    i^i cin 3339    C_ wss 3340   (/)c0 3649   ~Pcpw 3872   U.cuni 4103   |^|_ciin 4184   class class class wbr 4304   ` cfv 5430   topGenctg 14388   Fnecfne 28543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-ral 2732  df-rex 2733  df-rab 2736  df-v 2986  df-sbc 3199  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-op 3896  df-uni 4104  df-iin 4186  df-br 4305  df-opab 4363  df-mpt 4364  df-id 4648  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-iota 5393  df-fun 5432  df-fv 5438  df-topgen 14394  df-fne 28547
This theorem is referenced by:  fnemeet2  28600
  Copyright terms: Public domain W3C validator