Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnejoin2 Structured version   Visualization version   Unicode version

Theorem fnejoin2 31037
Description: Join of equivalence classes under the fineness relation-part two. (Contributed by Jeff Hankins, 8-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
fnejoin2  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( if ( S  =  (/) ,  { X } ,  U. S ) Fne T  <->  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) ) )
Distinct variable groups:    x, y, S    x, V    x, X, y    x, T
Allowed substitution hints:    T( y)    V( y)

Proof of Theorem fnejoin2
StepHypRef Expression
1 unisng 4217 . . . . . . . . 9  |-  ( X  e.  V  ->  U. { X }  =  X
)
21eqcomd 2459 . . . . . . . 8  |-  ( X  e.  V  ->  X  =  U. { X }
)
32adantr 467 . . . . . . 7  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  ->  X  =  U. { X } )
4 iftrue 3889 . . . . . . . . 9  |-  ( S  =  (/)  ->  if ( S  =  (/) ,  { X } ,  U. S
)  =  { X } )
54unieqd 4211 . . . . . . . 8  |-  ( S  =  (/)  ->  U. if ( S  =  (/) ,  { X } ,  U. S
)  =  U. { X } )
65eqeq2d 2463 . . . . . . 7  |-  ( S  =  (/)  ->  ( X  =  U. if ( S  =  (/) ,  { X } ,  U. S
)  <->  X  =  U. { X } ) )
73, 6syl5ibrcom 226 . . . . . 6  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( S  =  (/)  ->  X  =  U. if ( S  =  (/) ,  { X } ,  U. S
) ) )
8 n0 3743 . . . . . . 7  |-  ( S  =/=  (/)  <->  E. x  x  e.  S )
9 unieq 4209 . . . . . . . . . . . . 13  |-  ( y  =  x  ->  U. y  =  U. x )
109eqeq2d 2463 . . . . . . . . . . . 12  |-  ( y  =  x  ->  ( X  =  U. y  <->  X  =  U. x ) )
1110rspccva 3151 . . . . . . . . . . 11  |-  ( ( A. y  e.  S  X  =  U. y  /\  x  e.  S
)  ->  X  =  U. x )
12113adant1 1027 . . . . . . . . . 10  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  x  e.  S )  ->  X  =  U. x )
13 fnejoin1 31036 . . . . . . . . . . 11  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  x  e.  S )  ->  x Fne if ( S  =  (/) ,  { X } ,  U. S ) )
14 eqid 2453 . . . . . . . . . . . 12  |-  U. x  =  U. x
15 eqid 2453 . . . . . . . . . . . 12  |-  U. if ( S  =  (/) ,  { X } ,  U. S
)  =  U. if ( S  =  (/) ,  { X } ,  U. S
)
1614, 15fnebas 31012 . . . . . . . . . . 11  |-  ( x Fne if ( S  =  (/) ,  { X } ,  U. S )  ->  U. x  =  U. if ( S  =  (/) ,  { X } ,  U. S ) )
1713, 16syl 17 . . . . . . . . . 10  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  x  e.  S )  ->  U. x  =  U. if ( S  =  (/) ,  { X } ,  U. S ) )
1812, 17eqtrd 2487 . . . . . . . . 9  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  x  e.  S )  ->  X  =  U. if ( S  =  (/) ,  { X } ,  U. S ) )
19183expia 1211 . . . . . . . 8  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( x  e.  S  ->  X  =  U. if ( S  =  (/) ,  { X } ,  U. S
) ) )
2019exlimdv 1781 . . . . . . 7  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( E. x  x  e.  S  ->  X  =  U. if ( S  =  (/) ,  { X } ,  U. S ) ) )
218, 20syl5bi 221 . . . . . 6  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( S  =/=  (/)  ->  X  =  U. if ( S  =  (/) ,  { X } ,  U. S ) ) )
227, 21pm2.61dne 2712 . . . . 5  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  ->  X  =  U. if ( S  =  (/) ,  { X } ,  U. S
) )
23 eqid 2453 . . . . . 6  |-  U. T  =  U. T
2415, 23fnebas 31012 . . . . 5  |-  ( if ( S  =  (/) ,  { X } ,  U. S ) Fne T  ->  U. if ( S  =  (/) ,  { X } ,  U. S )  =  U. T )
2522, 24sylan9eq 2507 . . . 4  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  if ( S  =  (/) ,  { X } ,  U. S
) Fne T )  ->  X  =  U. T )
2625ex 436 . . 3  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( if ( S  =  (/) ,  { X } ,  U. S ) Fne T  ->  X  =  U. T ) )
27 fnetr 31019 . . . . . . 7  |-  ( ( x Fne if ( S  =  (/) ,  { X } ,  U. S
)  /\  if ( S  =  (/) ,  { X } ,  U. S
) Fne T )  ->  x Fne T
)
2827ex 436 . . . . . 6  |-  ( x Fne if ( S  =  (/) ,  { X } ,  U. S )  ->  ( if ( S  =  (/) ,  { X } ,  U. S
) Fne T  ->  x Fne T ) )
2913, 28syl 17 . . . . 5  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  x  e.  S )  ->  ( if ( S  =  (/) ,  { X } ,  U. S ) Fne T  ->  x Fne T ) )
30293expa 1209 . . . 4  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  x  e.  S )  ->  ( if ( S  =  (/) ,  { X } ,  U. S ) Fne T  ->  x Fne T ) )
3130ralrimdva 2808 . . 3  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( if ( S  =  (/) ,  { X } ,  U. S ) Fne T  ->  A. x  e.  S  x Fne T ) )
3226, 31jcad 536 . 2  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( if ( S  =  (/) ,  { X } ,  U. S ) Fne T  ->  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) ) )
3322adantr 467 . . . . 5  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  ->  X  =  U. if ( S  =  (/) ,  { X } ,  U. S
) )
34 simprl 765 . . . . 5  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  ->  X  =  U. T )
3533, 34eqtr3d 2489 . . . 4  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  ->  U. if ( S  =  (/) ,  { X } ,  U. S )  = 
U. T )
36 sseq1 3455 . . . . 5  |-  ( { X }  =  if ( S  =  (/) ,  { X } ,  U. S )  ->  ( { X }  C_  ( topGen `
 T )  <->  if ( S  =  (/) ,  { X } ,  U. S
)  C_  ( topGen `  T ) ) )
37 sseq1 3455 . . . . 5  |-  ( U. S  =  if ( S  =  (/) ,  { X } ,  U. S
)  ->  ( U. S  C_  ( topGen `  T
)  <->  if ( S  =  (/) ,  { X } ,  U. S )  C_  ( topGen `  T )
) )
38 elex 3056 . . . . . . . . . . . 12  |-  ( X  e.  V  ->  X  e.  _V )
3938ad2antrr 733 . . . . . . . . . . 11  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  ->  X  e.  _V )
4034, 39eqeltrrd 2532 . . . . . . . . . 10  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  ->  U. T  e.  _V )
41 uniexb 6606 . . . . . . . . . 10  |-  ( T  e.  _V  <->  U. T  e. 
_V )
4240, 41sylibr 216 . . . . . . . . 9  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  ->  T  e.  _V )
43 ssid 3453 . . . . . . . . 9  |-  T  C_  T
44 eltg3i 19988 . . . . . . . . 9  |-  ( ( T  e.  _V  /\  T  C_  T )  ->  U. T  e.  ( topGen `
 T ) )
4542, 43, 44sylancl 669 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  ->  U. T  e.  ( topGen `
 T ) )
4634, 45eqeltrd 2531 . . . . . . 7  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  ->  X  e.  ( topGen `  T ) )
4746snssd 4120 . . . . . 6  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  ->  { X }  C_  ( topGen `
 T ) )
4847adantr 467 . . . . 5  |-  ( ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  /\  S  =  (/) )  ->  { X }  C_  ( topGen `  T )
)
49 simplrr 772 . . . . . . 7  |-  ( ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  /\  -.  S  =  (/) )  ->  A. x  e.  S  x Fne T )
50 fnetg 31013 . . . . . . . 8  |-  ( x Fne T  ->  x  C_  ( topGen `  T )
)
5150ralimi 2783 . . . . . . 7  |-  ( A. x  e.  S  x Fne T  ->  A. x  e.  S  x  C_  ( topGen `
 T ) )
5249, 51syl 17 . . . . . 6  |-  ( ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  /\  -.  S  =  (/) )  ->  A. x  e.  S  x  C_  ( topGen `
 T ) )
53 unissb 4232 . . . . . 6  |-  ( U. S  C_  ( topGen `  T
)  <->  A. x  e.  S  x  C_  ( topGen `  T
) )
5452, 53sylibr 216 . . . . 5  |-  ( ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  /\  -.  S  =  (/) )  ->  U. S  C_  ( topGen `  T )
)
5536, 37, 48, 54ifbothda 3918 . . . 4  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  ->  if ( S  =  (/) ,  { X } ,  U. S )  C_  ( topGen `
 T ) )
5615, 23isfne4 31008 . . . 4  |-  ( if ( S  =  (/) ,  { X } ,  U. S ) Fne T  <->  ( U. if ( S  =  (/) ,  { X } ,  U. S )  =  U. T  /\  if ( S  =  (/) ,  { X } ,  U. S )  C_  ( topGen `
 T ) ) )
5735, 55, 56sylanbrc 671 . . 3  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  ->  if ( S  =  (/) ,  { X } ,  U. S ) Fne T
)
5857ex 436 . 2  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( ( X  = 
U. T  /\  A. x  e.  S  x Fne T )  ->  if ( S  =  (/) ,  { X } ,  U. S
) Fne T ) )
5932, 58impbid 194 1  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( if ( S  =  (/) ,  { X } ,  U. S ) Fne T  <->  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 986    = wceq 1446   E.wex 1665    e. wcel 1889    =/= wne 2624   A.wral 2739   _Vcvv 3047    C_ wss 3406   (/)c0 3733   ifcif 3883   {csn 3970   U.cuni 4201   class class class wbr 4405   ` cfv 5585   topGenctg 15348   Fnecfne 31004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-8 1891  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-sep 4528  ax-nul 4537  ax-pow 4584  ax-pr 4642  ax-un 6588
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 988  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-eu 2305  df-mo 2306  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-ral 2744  df-rex 2745  df-rab 2748  df-v 3049  df-sbc 3270  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-nul 3734  df-if 3884  df-pw 3955  df-sn 3971  df-pr 3973  df-op 3977  df-uni 4202  df-iun 4283  df-br 4406  df-opab 4465  df-mpt 4466  df-id 4752  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-iota 5549  df-fun 5587  df-fv 5593  df-topgen 15354  df-fne 31005
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator