Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnejoin2 Structured version   Unicode version

Theorem fnejoin2 29777
Description: Join of equivalence classes under the fineness relation-part two. (Contributed by Jeff Hankins, 8-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
fnejoin2  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( if ( S  =  (/) ,  { X } ,  U. S ) Fne T  <->  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) ) )
Distinct variable groups:    x, y, S    x, V    x, X, y    x, T
Allowed substitution hints:    T( y)    V( y)

Proof of Theorem fnejoin2
StepHypRef Expression
1 unisng 4254 . . . . . . . . 9  |-  ( X  e.  V  ->  U. { X }  =  X
)
21eqcomd 2468 . . . . . . . 8  |-  ( X  e.  V  ->  X  =  U. { X }
)
32adantr 465 . . . . . . 7  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  ->  X  =  U. { X } )
4 iftrue 3938 . . . . . . . . 9  |-  ( S  =  (/)  ->  if ( S  =  (/) ,  { X } ,  U. S
)  =  { X } )
54unieqd 4248 . . . . . . . 8  |-  ( S  =  (/)  ->  U. if ( S  =  (/) ,  { X } ,  U. S
)  =  U. { X } )
65eqeq2d 2474 . . . . . . 7  |-  ( S  =  (/)  ->  ( X  =  U. if ( S  =  (/) ,  { X } ,  U. S
)  <->  X  =  U. { X } ) )
73, 6syl5ibrcom 222 . . . . . 6  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( S  =  (/)  ->  X  =  U. if ( S  =  (/) ,  { X } ,  U. S
) ) )
8 n0 3787 . . . . . . 7  |-  ( S  =/=  (/)  <->  E. x  x  e.  S )
9 unieq 4246 . . . . . . . . . . . . 13  |-  ( y  =  x  ->  U. y  =  U. x )
109eqeq2d 2474 . . . . . . . . . . . 12  |-  ( y  =  x  ->  ( X  =  U. y  <->  X  =  U. x ) )
1110rspccva 3206 . . . . . . . . . . 11  |-  ( ( A. y  e.  S  X  =  U. y  /\  x  e.  S
)  ->  X  =  U. x )
12113adant1 1009 . . . . . . . . . 10  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  x  e.  S )  ->  X  =  U. x )
13 fnejoin1 29776 . . . . . . . . . . 11  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  x  e.  S )  ->  x Fne if ( S  =  (/) ,  { X } ,  U. S ) )
14 eqid 2460 . . . . . . . . . . . 12  |-  U. x  =  U. x
15 eqid 2460 . . . . . . . . . . . 12  |-  U. if ( S  =  (/) ,  { X } ,  U. S
)  =  U. if ( S  =  (/) ,  { X } ,  U. S
)
1614, 15fnebas 29732 . . . . . . . . . . 11  |-  ( x Fne if ( S  =  (/) ,  { X } ,  U. S )  ->  U. x  =  U. if ( S  =  (/) ,  { X } ,  U. S ) )
1713, 16syl 16 . . . . . . . . . 10  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  x  e.  S )  ->  U. x  =  U. if ( S  =  (/) ,  { X } ,  U. S ) )
1812, 17eqtrd 2501 . . . . . . . . 9  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  x  e.  S )  ->  X  =  U. if ( S  =  (/) ,  { X } ,  U. S ) )
19183expia 1193 . . . . . . . 8  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( x  e.  S  ->  X  =  U. if ( S  =  (/) ,  { X } ,  U. S
) ) )
2019exlimdv 1695 . . . . . . 7  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( E. x  x  e.  S  ->  X  =  U. if ( S  =  (/) ,  { X } ,  U. S ) ) )
218, 20syl5bi 217 . . . . . 6  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( S  =/=  (/)  ->  X  =  U. if ( S  =  (/) ,  { X } ,  U. S ) ) )
227, 21pm2.61dne 2777 . . . . 5  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  ->  X  =  U. if ( S  =  (/) ,  { X } ,  U. S
) )
23 eqid 2460 . . . . . 6  |-  U. T  =  U. T
2415, 23fnebas 29732 . . . . 5  |-  ( if ( S  =  (/) ,  { X } ,  U. S ) Fne T  ->  U. if ( S  =  (/) ,  { X } ,  U. S )  =  U. T )
2522, 24sylan9eq 2521 . . . 4  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  if ( S  =  (/) ,  { X } ,  U. S
) Fne T )  ->  X  =  U. T )
2625ex 434 . . 3  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( if ( S  =  (/) ,  { X } ,  U. S ) Fne T  ->  X  =  U. T ) )
27 fnetr 29745 . . . . . . 7  |-  ( ( x Fne if ( S  =  (/) ,  { X } ,  U. S
)  /\  if ( S  =  (/) ,  { X } ,  U. S
) Fne T )  ->  x Fne T
)
2827ex 434 . . . . . 6  |-  ( x Fne if ( S  =  (/) ,  { X } ,  U. S )  ->  ( if ( S  =  (/) ,  { X } ,  U. S
) Fne T  ->  x Fne T ) )
2913, 28syl 16 . . . . 5  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  x  e.  S )  ->  ( if ( S  =  (/) ,  { X } ,  U. S ) Fne T  ->  x Fne T ) )
30293expa 1191 . . . 4  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  x  e.  S )  ->  ( if ( S  =  (/) ,  { X } ,  U. S ) Fne T  ->  x Fne T ) )
3130ralrimdva 2875 . . 3  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( if ( S  =  (/) ,  { X } ,  U. S ) Fne T  ->  A. x  e.  S  x Fne T ) )
3226, 31jcad 533 . 2  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( if ( S  =  (/) ,  { X } ,  U. S ) Fne T  ->  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) ) )
3322adantr 465 . . . . 5  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  ->  X  =  U. if ( S  =  (/) ,  { X } ,  U. S
) )
34 simprl 755 . . . . 5  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  ->  X  =  U. T )
3533, 34eqtr3d 2503 . . . 4  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  ->  U. if ( S  =  (/) ,  { X } ,  U. S )  = 
U. T )
36 sseq1 3518 . . . . 5  |-  ( { X }  =  if ( S  =  (/) ,  { X } ,  U. S )  ->  ( { X }  C_  ( topGen `
 T )  <->  if ( S  =  (/) ,  { X } ,  U. S
)  C_  ( topGen `  T ) ) )
37 sseq1 3518 . . . . 5  |-  ( U. S  =  if ( S  =  (/) ,  { X } ,  U. S
)  ->  ( U. S  C_  ( topGen `  T
)  <->  if ( S  =  (/) ,  { X } ,  U. S )  C_  ( topGen `  T )
) )
38 elex 3115 . . . . . . . . . . . 12  |-  ( X  e.  V  ->  X  e.  _V )
3938ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  ->  X  e.  _V )
4034, 39eqeltrrd 2549 . . . . . . . . . 10  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  ->  U. T  e.  _V )
41 uniexb 6581 . . . . . . . . . 10  |-  ( T  e.  _V  <->  U. T  e. 
_V )
4240, 41sylibr 212 . . . . . . . . 9  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  ->  T  e.  _V )
43 ssid 3516 . . . . . . . . 9  |-  T  C_  T
44 eltg3i 19222 . . . . . . . . 9  |-  ( ( T  e.  _V  /\  T  C_  T )  ->  U. T  e.  ( topGen `
 T ) )
4542, 43, 44sylancl 662 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  ->  U. T  e.  ( topGen `
 T ) )
4634, 45eqeltrd 2548 . . . . . . 7  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  ->  X  e.  ( topGen `  T ) )
4746snssd 4165 . . . . . 6  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  ->  { X }  C_  ( topGen `
 T ) )
4847adantr 465 . . . . 5  |-  ( ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  /\  S  =  (/) )  ->  { X }  C_  ( topGen `  T )
)
49 simplrr 760 . . . . . . 7  |-  ( ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  /\  -.  S  =  (/) )  ->  A. x  e.  S  x Fne T )
50 fnetg 29733 . . . . . . . 8  |-  ( x Fne T  ->  x  C_  ( topGen `  T )
)
5150ralimi 2850 . . . . . . 7  |-  ( A. x  e.  S  x Fne T  ->  A. x  e.  S  x  C_  ( topGen `
 T ) )
5249, 51syl 16 . . . . . 6  |-  ( ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  /\  -.  S  =  (/) )  ->  A. x  e.  S  x  C_  ( topGen `
 T ) )
53 unissb 4270 . . . . . 6  |-  ( U. S  C_  ( topGen `  T
)  <->  A. x  e.  S  x  C_  ( topGen `  T
) )
5452, 53sylibr 212 . . . . 5  |-  ( ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  /\  -.  S  =  (/) )  ->  U. S  C_  ( topGen `  T )
)
5536, 37, 48, 54ifbothda 3967 . . . 4  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  ->  if ( S  =  (/) ,  { X } ,  U. S )  C_  ( topGen `
 T ) )
5615, 23isfne4 29728 . . . 4  |-  ( if ( S  =  (/) ,  { X } ,  U. S ) Fne T  <->  ( U. if ( S  =  (/) ,  { X } ,  U. S )  =  U. T  /\  if ( S  =  (/) ,  { X } ,  U. S )  C_  ( topGen `
 T ) ) )
5735, 55, 56sylanbrc 664 . . 3  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  ->  if ( S  =  (/) ,  { X } ,  U. S ) Fne T
)
5857ex 434 . 2  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( ( X  = 
U. T  /\  A. x  e.  S  x Fne T )  ->  if ( S  =  (/) ,  { X } ,  U. S
) Fne T ) )
5932, 58impbid 191 1  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( if ( S  =  (/) ,  { X } ,  U. S ) Fne T  <->  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 968    = wceq 1374   E.wex 1591    e. wcel 1762    =/= wne 2655   A.wral 2807   _Vcvv 3106    C_ wss 3469   (/)c0 3778   ifcif 3932   {csn 4020   U.cuni 4238   class class class wbr 4440   ` cfv 5579   topGenctg 14682   Fnecfne 29718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3108  df-sbc 3325  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-id 4788  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-iota 5542  df-fun 5581  df-fv 5587  df-topgen 14688  df-fne 29722
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator