Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fneint Structured version   Unicode version

Theorem fneint 29736
Description: If a cover is finer than another, every point can be approached more closely by intersections. (Contributed by Jeff Hankins, 11-Oct-2009.)
Assertion
Ref Expression
fneint  |-  ( A Fne B  ->  |^| { x  e.  B  |  P  e.  x }  C_  |^| { x  e.  A  |  P  e.  x } )
Distinct variable groups:    x, A    x, B    x, P

Proof of Theorem fneint
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2533 . . . . 5  |-  ( x  =  y  ->  ( P  e.  x  <->  P  e.  y ) )
21elrab 3254 . . . 4  |-  ( y  e.  { x  e.  A  |  P  e.  x }  <->  ( y  e.  A  /\  P  e.  y ) )
3 fnessex 29734 . . . . . . 7  |-  ( ( A Fne B  /\  y  e.  A  /\  P  e.  y )  ->  E. z  e.  B  ( P  e.  z  /\  z  C_  y ) )
433expb 1192 . . . . . 6  |-  ( ( A Fne B  /\  ( y  e.  A  /\  P  e.  y
) )  ->  E. z  e.  B  ( P  e.  z  /\  z  C_  y ) )
5 eleq2 2533 . . . . . . . . . 10  |-  ( x  =  z  ->  ( P  e.  x  <->  P  e.  z ) )
65intminss 4301 . . . . . . . . 9  |-  ( ( z  e.  B  /\  P  e.  z )  ->  |^| { x  e.  B  |  P  e.  x }  C_  z
)
7 sstr 3505 . . . . . . . . 9  |-  ( (
|^| { x  e.  B  |  P  e.  x }  C_  z  /\  z  C_  y )  ->  |^| { x  e.  B  |  P  e.  x }  C_  y
)
86, 7sylan 471 . . . . . . . 8  |-  ( ( ( z  e.  B  /\  P  e.  z
)  /\  z  C_  y )  ->  |^| { x  e.  B  |  P  e.  x }  C_  y
)
98expl 618 . . . . . . 7  |-  ( z  e.  B  ->  (
( P  e.  z  /\  z  C_  y
)  ->  |^| { x  e.  B  |  P  e.  x }  C_  y
) )
109rexlimiv 2942 . . . . . 6  |-  ( E. z  e.  B  ( P  e.  z  /\  z  C_  y )  ->  |^| { x  e.  B  |  P  e.  x }  C_  y )
114, 10syl 16 . . . . 5  |-  ( ( A Fne B  /\  ( y  e.  A  /\  P  e.  y
) )  ->  |^| { x  e.  B  |  P  e.  x }  C_  y
)
1211ex 434 . . . 4  |-  ( A Fne B  ->  (
( y  e.  A  /\  P  e.  y
)  ->  |^| { x  e.  B  |  P  e.  x }  C_  y
) )
132, 12syl5bi 217 . . 3  |-  ( A Fne B  ->  (
y  e.  { x  e.  A  |  P  e.  x }  ->  |^| { x  e.  B  |  P  e.  x }  C_  y
) )
1413ralrimiv 2869 . 2  |-  ( A Fne B  ->  A. y  e.  { x  e.  A  |  P  e.  x } |^| { x  e.  B  |  P  e.  x }  C_  y
)
15 ssint 4291 . 2  |-  ( |^| { x  e.  B  |  P  e.  x }  C_ 
|^| { x  e.  A  |  P  e.  x } 
<-> 
A. y  e.  {
x  e.  A  |  P  e.  x } |^| { x  e.  B  |  P  e.  x }  C_  y )
1614, 15sylibr 212 1  |-  ( A Fne B  ->  |^| { x  e.  B  |  P  e.  x }  C_  |^| { x  e.  A  |  P  e.  x } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1762   A.wral 2807   E.wrex 2808   {crab 2811    C_ wss 3469   |^|cint 4275   class class class wbr 4440   Fnecfne 29718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3108  df-sbc 3325  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-int 4276  df-br 4441  df-opab 4499  df-mpt 4500  df-id 4788  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-iota 5542  df-fun 5581  df-fv 5587  df-topgen 14688  df-fne 29722
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator