MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnco Structured version   Unicode version

Theorem fnco 5619
Description: Composition of two functions. (Contributed by NM, 22-May-2006.)
Assertion
Ref Expression
fnco  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ran  G  C_  A )  ->  ( F  o.  G
)  Fn  B )

Proof of Theorem fnco
StepHypRef Expression
1 fnfun 5608 . . . 4  |-  ( F  Fn  A  ->  Fun  F )
2 fnfun 5608 . . . 4  |-  ( G  Fn  B  ->  Fun  G )
3 funco 5556 . . . 4  |-  ( ( Fun  F  /\  Fun  G )  ->  Fun  ( F  o.  G ) )
41, 2, 3syl2an 477 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  Fun  ( F  o.  G ) )
543adant3 1008 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ran  G  C_  A )  ->  Fun  ( F  o.  G ) )
6 fndm 5610 . . . . . . 7  |-  ( F  Fn  A  ->  dom  F  =  A )
76sseq2d 3484 . . . . . 6  |-  ( F  Fn  A  ->  ( ran  G  C_  dom  F  <->  ran  G  C_  A ) )
87biimpar 485 . . . . 5  |-  ( ( F  Fn  A  /\  ran  G  C_  A )  ->  ran  G  C_  dom  F )
9 dmcosseq 5201 . . . . 5  |-  ( ran 
G  C_  dom  F  ->  dom  ( F  o.  G
)  =  dom  G
)
108, 9syl 16 . . . 4  |-  ( ( F  Fn  A  /\  ran  G  C_  A )  ->  dom  ( F  o.  G )  =  dom  G )
11103adant2 1007 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ran  G  C_  A )  ->  dom  ( F  o.  G )  =  dom  G )
12 fndm 5610 . . . 4  |-  ( G  Fn  B  ->  dom  G  =  B )
13123ad2ant2 1010 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ran  G  C_  A )  ->  dom  G  =  B )
1411, 13eqtrd 2492 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ran  G  C_  A )  ->  dom  ( F  o.  G )  =  B )
15 df-fn 5521 . 2  |-  ( ( F  o.  G )  Fn  B  <->  ( Fun  ( F  o.  G
)  /\  dom  ( F  o.  G )  =  B ) )
165, 14, 15sylanbrc 664 1  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ran  G  C_  A )  ->  ( F  o.  G
)  Fn  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    C_ wss 3428   dom cdm 4940   ran crn 4941    o. ccom 4944   Fun wfun 5512    Fn wfn 5513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4513  ax-nul 4521  ax-pr 4631
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-rab 2804  df-v 3072  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-nul 3738  df-if 3892  df-sn 3978  df-pr 3980  df-op 3984  df-br 4393  df-opab 4451  df-id 4736  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-fun 5520  df-fn 5521
This theorem is referenced by:  fco  5668  fnfco  5677  fipreima  7720  cshco  12568  swrdco  12569  prdsinvlem  15767  prdsmgp  16810  pws1  16816  evlslem1  17710  frlmbas  18291  frlmbasOLD  18292  frlmup3  18339  frlmup4  18340  upxp  19314  uptx  19316  0vfval  24121  xppreima2  26101  sseqfv1  26908  sseqfn  26909  sseqfv2  26913  volsupnfl  28576  ftc1anclem5  28611  ftc1anclem8  28614
  Copyright terms: Public domain W3C validator