MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fncnv Structured version   Unicode version

Theorem fncnv 5593
Description: Single-rootedness (see funcnv 5589) of a class cut down by a Cartesian product. (Contributed by NM, 5-Mar-2007.)
Assertion
Ref Expression
fncnv  |-  ( `' ( R  i^i  ( A  X.  B ) )  Fn  B  <->  A. y  e.  B  E! x  e.  A  x R
y )
Distinct variable groups:    x, y, A    x, B, y    x, R, y

Proof of Theorem fncnv
StepHypRef Expression
1 df-fn 5532 . 2  |-  ( `' ( R  i^i  ( A  X.  B ) )  Fn  B  <->  ( Fun  `' ( R  i^i  ( A  X.  B ) )  /\  dom  `' ( R  i^i  ( A  X.  B ) )  =  B ) )
2 df-rn 4962 . . . 4  |-  ran  ( R  i^i  ( A  X.  B ) )  =  dom  `' ( R  i^i  ( A  X.  B ) )
32eqeq1i 2461 . . 3  |-  ( ran  ( R  i^i  ( A  X.  B ) )  =  B  <->  dom  `' ( R  i^i  ( A  X.  B ) )  =  B )
43anbi2i 694 . 2  |-  ( ( Fun  `' ( R  i^i  ( A  X.  B ) )  /\  ran  ( R  i^i  ( A  X.  B ) )  =  B )  <->  ( Fun  `' ( R  i^i  ( A  X.  B ) )  /\  dom  `' ( R  i^i  ( A  X.  B ) )  =  B ) )
5 rninxp 5388 . . . . 5  |-  ( ran  ( R  i^i  ( A  X.  B ) )  =  B  <->  A. y  e.  B  E. x  e.  A  x R
y )
65anbi1i 695 . . . 4  |-  ( ( ran  ( R  i^i  ( A  X.  B
) )  =  B  /\  A. y  e.  B  E* x  e.  A  x R y )  <->  ( A. y  e.  B  E. x  e.  A  x R
y  /\  A. y  e.  B  E* x  e.  A  x R
y ) )
7 funcnv 5589 . . . . . 6  |-  ( Fun  `' ( R  i^i  ( A  X.  B
) )  <->  A. y  e.  ran  ( R  i^i  ( A  X.  B
) ) E* x  x ( R  i^i  ( A  X.  B
) ) y )
8 raleq 3023 . . . . . . 7  |-  ( ran  ( R  i^i  ( A  X.  B ) )  =  B  ->  ( A. y  e.  ran  ( R  i^i  ( A  X.  B ) ) E* x  x ( R  i^i  ( A  X.  B ) ) y  <->  A. y  e.  B  E* x  x ( R  i^i  ( A  X.  B ) ) y ) )
9 biimt 335 . . . . . . . . 9  |-  ( y  e.  B  ->  ( E* x  e.  A  x R y  <->  ( y  e.  B  ->  E* x  e.  A  x R
y ) ) )
10 moanimv 2343 . . . . . . . . . 10  |-  ( E* x ( y  e.  B  /\  ( x  e.  A  /\  x R y ) )  <-> 
( y  e.  B  ->  E* x ( x  e.  A  /\  x R y ) ) )
11 brinxp2 5011 . . . . . . . . . . . 12  |-  ( x ( R  i^i  ( A  X.  B ) ) y  <->  ( x  e.  A  /\  y  e.  B  /\  x R y ) )
12 3anan12 978 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  y  e.  B  /\  x R y )  <->  ( y  e.  B  /\  (
x  e.  A  /\  x R y ) ) )
1311, 12bitri 249 . . . . . . . . . . 11  |-  ( x ( R  i^i  ( A  X.  B ) ) y  <->  ( y  e.  B  /\  ( x  e.  A  /\  x R y ) ) )
1413mobii 2288 . . . . . . . . . 10  |-  ( E* x  x ( R  i^i  ( A  X.  B ) ) y  <->  E* x ( y  e.  B  /\  ( x  e.  A  /\  x R y ) ) )
15 df-rmo 2807 . . . . . . . . . . 11  |-  ( E* x  e.  A  x R y  <->  E* x
( x  e.  A  /\  x R y ) )
1615imbi2i 312 . . . . . . . . . 10  |-  ( ( y  e.  B  ->  E* x  e.  A  x R y )  <->  ( y  e.  B  ->  E* x
( x  e.  A  /\  x R y ) ) )
1710, 14, 163bitr4i 277 . . . . . . . . 9  |-  ( E* x  x ( R  i^i  ( A  X.  B ) ) y  <-> 
( y  e.  B  ->  E* x  e.  A  x R y ) )
189, 17syl6rbbr 264 . . . . . . . 8  |-  ( y  e.  B  ->  ( E* x  x ( R  i^i  ( A  X.  B ) ) y  <->  E* x  e.  A  x R y ) )
1918ralbiia 2838 . . . . . . 7  |-  ( A. y  e.  B  E* x  x ( R  i^i  ( A  X.  B
) ) y  <->  A. y  e.  B  E* x  e.  A  x R
y )
208, 19syl6bb 261 . . . . . 6  |-  ( ran  ( R  i^i  ( A  X.  B ) )  =  B  ->  ( A. y  e.  ran  ( R  i^i  ( A  X.  B ) ) E* x  x ( R  i^i  ( A  X.  B ) ) y  <->  A. y  e.  B  E* x  e.  A  x R y ) )
217, 20syl5bb 257 . . . . 5  |-  ( ran  ( R  i^i  ( A  X.  B ) )  =  B  ->  ( Fun  `' ( R  i^i  ( A  X.  B
) )  <->  A. y  e.  B  E* x  e.  A  x R
y ) )
2221pm5.32i 637 . . . 4  |-  ( ( ran  ( R  i^i  ( A  X.  B
) )  =  B  /\  Fun  `' ( R  i^i  ( A  X.  B ) ) )  <->  ( ran  ( R  i^i  ( A  X.  B ) )  =  B  /\  A. y  e.  B  E* x  e.  A  x R
y ) )
23 r19.26 2955 . . . 4  |-  ( A. y  e.  B  ( E. x  e.  A  x R y  /\  E* x  e.  A  x R y )  <->  ( A. y  e.  B  E. x  e.  A  x R y  /\  A. y  e.  B  E* x  e.  A  x R y ) )
246, 22, 233bitr4i 277 . . 3  |-  ( ( ran  ( R  i^i  ( A  X.  B
) )  =  B  /\  Fun  `' ( R  i^i  ( A  X.  B ) ) )  <->  A. y  e.  B  ( E. x  e.  A  x R y  /\  E* x  e.  A  x R y ) )
25 ancom 450 . . 3  |-  ( ( Fun  `' ( R  i^i  ( A  X.  B ) )  /\  ran  ( R  i^i  ( A  X.  B ) )  =  B )  <->  ( ran  ( R  i^i  ( A  X.  B ) )  =  B  /\  Fun  `' ( R  i^i  ( A  X.  B ) ) ) )
26 reu5 3042 . . . 4  |-  ( E! x  e.  A  x R y  <->  ( E. x  e.  A  x R y  /\  E* x  e.  A  x R y ) )
2726ralbii 2839 . . 3  |-  ( A. y  e.  B  E! x  e.  A  x R y  <->  A. y  e.  B  ( E. x  e.  A  x R y  /\  E* x  e.  A  x R y ) )
2824, 25, 273bitr4i 277 . 2  |-  ( ( Fun  `' ( R  i^i  ( A  X.  B ) )  /\  ran  ( R  i^i  ( A  X.  B ) )  =  B )  <->  A. y  e.  B  E! x  e.  A  x R
y )
291, 4, 283bitr2i 273 1  |-  ( `' ( R  i^i  ( A  X.  B ) )  Fn  B  <->  A. y  e.  B  E! x  e.  A  x R
y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   E*wmo 2263   A.wral 2799   E.wrex 2800   E!wreu 2801   E*wrmo 2802    i^i cin 3438   class class class wbr 4403    X. cxp 4949   `'ccnv 4950   dom cdm 4951   ran crn 4952   Fun wfun 5523    Fn wfn 5524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pr 4642
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-sn 3989  df-pr 3991  df-op 3995  df-br 4404  df-opab 4462  df-id 4747  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-fun 5531  df-fn 5532
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator