MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnasrn Structured version   Unicode version

Theorem fnasrn 6053
Description: A function expressed as the range of another function. (Contributed by Mario Carneiro, 22-Jun-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
dfmpt.1  |-  B  e. 
_V
Assertion
Ref Expression
fnasrn  |-  ( x  e.  A  |->  B )  =  ran  ( x  e.  A  |->  <. x ,  B >. )

Proof of Theorem fnasrn
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfmpt.1 . . 3  |-  B  e. 
_V
21dfmpt 6052 . 2  |-  ( x  e.  A  |->  B )  =  U_ x  e.  A  { <. x ,  B >. }
3 eqid 2454 . . . . 5  |-  ( x  e.  A  |->  <. x ,  B >. )  =  ( x  e.  A  |->  <.
x ,  B >. )
43rnmpt 5237 . . . 4  |-  ran  (
x  e.  A  |->  <.
x ,  B >. )  =  { y  |  E. x  e.  A  y  =  <. x ,  B >. }
5 elsn 4030 . . . . . 6  |-  ( y  e.  { <. x ,  B >. }  <->  y  =  <. x ,  B >. )
65rexbii 2956 . . . . 5  |-  ( E. x  e.  A  y  e.  { <. x ,  B >. }  <->  E. x  e.  A  y  =  <. x ,  B >. )
76abbii 2588 . . . 4  |-  { y  |  E. x  e.  A  y  e.  { <. x ,  B >. } }  =  { y  |  E. x  e.  A  y  =  <. x ,  B >. }
84, 7eqtr4i 2486 . . 3  |-  ran  (
x  e.  A  |->  <.
x ,  B >. )  =  { y  |  E. x  e.  A  y  e.  { <. x ,  B >. } }
9 df-iun 4317 . . 3  |-  U_ x  e.  A  { <. x ,  B >. }  =  {
y  |  E. x  e.  A  y  e.  {
<. x ,  B >. } }
108, 9eqtr4i 2486 . 2  |-  ran  (
x  e.  A  |->  <.
x ,  B >. )  =  U_ x  e.  A  { <. x ,  B >. }
112, 10eqtr4i 2486 1  |-  ( x  e.  A  |->  B )  =  ran  ( x  e.  A  |->  <. x ,  B >. )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1398    e. wcel 1823   {cab 2439   E.wrex 2805   _Vcvv 3106   {csn 4016   <.cop 4022   U_ciun 4315    |-> cmpt 4497   ran crn 4989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577
This theorem is referenced by:  resfunexg  6112  idref  6128  gruf  9178
  Copyright terms: Public domain W3C validator