MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmval Structured version   Unicode version

Theorem fmval 19358
Description: Introduce a function that takes a function from a filtered domain to a set and produces a filter which consists of supersets of images of filter elements. The functions which are dealt with by this function are similar to nets in topology. For example, suppose we have a sequence filtered by the filter generated by its tails under the usual positive integer ordering. Then the elements of this filter are precisely the supersets of tails of this sequence. Under this definition, it is not too difficult to see that the limit of a function in the filter sense captures the notion of convergence of a sequence. As a result, the notion of a filter generalizes many ideas associated with sequences, and this function is one way to make that relationship precise in Metamath. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Assertion
Ref Expression
fmval  |-  ( ( X  e.  A  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  -> 
( ( X  FilMap  F ) `  B )  =  ( X filGen ran  ( y  e.  B  |->  ( F " y
) ) ) )
Distinct variable groups:    y, B    y, F    y, X    y, Y    y, A

Proof of Theorem fmval
Dummy variables  f 
b  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fm 19353 . . . . 5  |-  FilMap  =  ( x  e.  _V , 
f  e.  _V  |->  ( b  e.  ( fBas `  dom  f )  |->  ( x filGen ran  ( y  e.  b  |->  ( f
" y ) ) ) ) )
21a1i 11 . . . 4  |-  ( ( X  e.  A  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  ->  FilMap  =  ( x  e. 
_V ,  f  e. 
_V  |->  ( b  e.  ( fBas `  dom  f )  |->  ( x
filGen ran  ( y  e.  b  |->  ( f "
y ) ) ) ) ) )
3 dmeq 5027 . . . . . . . 8  |-  ( f  =  F  ->  dom  f  =  dom  F )
43fveq2d 5683 . . . . . . 7  |-  ( f  =  F  ->  ( fBas `  dom  f )  =  ( fBas `  dom  F ) )
54adantl 463 . . . . . 6  |-  ( ( x  =  X  /\  f  =  F )  ->  ( fBas `  dom  f )  =  (
fBas `  dom  F ) )
6 id 22 . . . . . . 7  |-  ( x  =  X  ->  x  =  X )
7 imaeq1 5152 . . . . . . . . 9  |-  ( f  =  F  ->  (
f " y )  =  ( F "
y ) )
87mpteq2dv 4367 . . . . . . . 8  |-  ( f  =  F  ->  (
y  e.  b  |->  ( f " y ) )  =  ( y  e.  b  |->  ( F
" y ) ) )
98rneqd 5054 . . . . . . 7  |-  ( f  =  F  ->  ran  ( y  e.  b 
|->  ( f " y
) )  =  ran  ( y  e.  b 
|->  ( F " y
) ) )
106, 9oveqan12d 6099 . . . . . 6  |-  ( ( x  =  X  /\  f  =  F )  ->  ( x filGen ran  (
y  e.  b  |->  ( f " y ) ) )  =  ( X filGen ran  ( y  e.  b  |->  ( F
" y ) ) ) )
115, 10mpteq12dv 4358 . . . . 5  |-  ( ( x  =  X  /\  f  =  F )  ->  ( b  e.  (
fBas `  dom  f ) 
|->  ( x filGen ran  (
y  e.  b  |->  ( f " y ) ) ) )  =  ( b  e.  (
fBas `  dom  F ) 
|->  ( X filGen ran  (
y  e.  b  |->  ( F " y ) ) ) ) )
12 fdm 5551 . . . . . . . 8  |-  ( F : Y --> X  ->  dom  F  =  Y )
1312fveq2d 5683 . . . . . . 7  |-  ( F : Y --> X  -> 
( fBas `  dom  F )  =  ( fBas `  Y
) )
1413mpteq1d 4361 . . . . . 6  |-  ( F : Y --> X  -> 
( b  e.  (
fBas `  dom  F ) 
|->  ( X filGen ran  (
y  e.  b  |->  ( F " y ) ) ) )  =  ( b  e.  (
fBas `  Y )  |->  ( X filGen ran  (
y  e.  b  |->  ( F " y ) ) ) ) )
15143ad2ant3 1004 . . . . 5  |-  ( ( X  e.  A  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  -> 
( b  e.  (
fBas `  dom  F ) 
|->  ( X filGen ran  (
y  e.  b  |->  ( F " y ) ) ) )  =  ( b  e.  (
fBas `  Y )  |->  ( X filGen ran  (
y  e.  b  |->  ( F " y ) ) ) ) )
1611, 15sylan9eqr 2487 . . . 4  |-  ( ( ( X  e.  A  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  /\  ( x  =  X  /\  f  =  F ) )  -> 
( b  e.  (
fBas `  dom  f ) 
|->  ( x filGen ran  (
y  e.  b  |->  ( f " y ) ) ) )  =  ( b  e.  (
fBas `  Y )  |->  ( X filGen ran  (
y  e.  b  |->  ( F " y ) ) ) ) )
17 elex 2971 . . . . 5  |-  ( X  e.  A  ->  X  e.  _V )
18173ad2ant1 1002 . . . 4  |-  ( ( X  e.  A  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  ->  X  e.  _V )
19 simp3 983 . . . . 5  |-  ( ( X  e.  A  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  ->  F : Y --> X )
20 elfvdm 5704 . . . . . 6  |-  ( B  e.  ( fBas `  Y
)  ->  Y  e.  dom  fBas )
21203ad2ant2 1003 . . . . 5  |-  ( ( X  e.  A  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  ->  Y  e.  dom  fBas )
22 simp1 981 . . . . 5  |-  ( ( X  e.  A  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  ->  X  e.  A )
23 fex2 6521 . . . . 5  |-  ( ( F : Y --> X  /\  Y  e.  dom  fBas  /\  X  e.  A )  ->  F  e.  _V )
2419, 21, 22, 23syl3anc 1211 . . . 4  |-  ( ( X  e.  A  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  ->  F  e.  _V )
25 fvex 5689 . . . . . 6  |-  ( fBas `  Y )  e.  _V
2625mptex 5935 . . . . 5  |-  ( b  e.  ( fBas `  Y
)  |->  ( X filGen ran  ( y  e.  b 
|->  ( F " y
) ) ) )  e.  _V
2726a1i 11 . . . 4  |-  ( ( X  e.  A  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  -> 
( b  e.  (
fBas `  Y )  |->  ( X filGen ran  (
y  e.  b  |->  ( F " y ) ) ) )  e. 
_V )
282, 16, 18, 24, 27ovmpt2d 6207 . . 3  |-  ( ( X  e.  A  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  -> 
( X  FilMap  F )  =  ( b  e.  ( fBas `  Y
)  |->  ( X filGen ran  ( y  e.  b 
|->  ( F " y
) ) ) ) )
2928fveq1d 5681 . 2  |-  ( ( X  e.  A  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  -> 
( ( X  FilMap  F ) `  B )  =  ( ( b  e.  ( fBas `  Y
)  |->  ( X filGen ran  ( y  e.  b 
|->  ( F " y
) ) ) ) `
 B ) )
30 mpteq1 4360 . . . . . 6  |-  ( b  =  B  ->  (
y  e.  b  |->  ( F " y ) )  =  ( y  e.  B  |->  ( F
" y ) ) )
3130rneqd 5054 . . . . 5  |-  ( b  =  B  ->  ran  ( y  e.  b 
|->  ( F " y
) )  =  ran  ( y  e.  B  |->  ( F " y
) ) )
3231oveq2d 6096 . . . 4  |-  ( b  =  B  ->  ( X filGen ran  ( y  e.  b  |->  ( F
" y ) ) )  =  ( X
filGen ran  ( y  e.  B  |->  ( F "
y ) ) ) )
33 eqid 2433 . . . 4  |-  ( b  e.  ( fBas `  Y
)  |->  ( X filGen ran  ( y  e.  b 
|->  ( F " y
) ) ) )  =  ( b  e.  ( fBas `  Y
)  |->  ( X filGen ran  ( y  e.  b 
|->  ( F " y
) ) ) )
34 ovex 6105 . . . 4  |-  ( X
filGen ran  ( y  e.  B  |->  ( F "
y ) ) )  e.  _V
3532, 33, 34fvmpt 5762 . . 3  |-  ( B  e.  ( fBas `  Y
)  ->  ( (
b  e.  ( fBas `  Y )  |->  ( X
filGen ran  ( y  e.  b  |->  ( F "
y ) ) ) ) `  B )  =  ( X filGen ran  ( y  e.  B  |->  ( F " y
) ) ) )
36353ad2ant2 1003 . 2  |-  ( ( X  e.  A  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  -> 
( ( b  e.  ( fBas `  Y
)  |->  ( X filGen ran  ( y  e.  b 
|->  ( F " y
) ) ) ) `
 B )  =  ( X filGen ran  (
y  e.  B  |->  ( F " y ) ) ) )
3729, 36eqtrd 2465 1  |-  ( ( X  e.  A  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  -> 
( ( X  FilMap  F ) `  B )  =  ( X filGen ran  ( y  e.  B  |->  ( F " y
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 958    = wceq 1362    e. wcel 1755   _Vcvv 2962    e. cmpt 4338   dom cdm 4827   ran crn 4828   "cima 4830   -->wf 5402   ` cfv 5406  (class class class)co 6080    e. cmpt2 6082   fBascfbas 17648   filGencfg 17649    FilMap cfm 19348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-op 3872  df-uni 4080  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-id 4623  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-fm 19353
This theorem is referenced by:  fmfil  19359  fmss  19361  elfm  19362  ucnextcn  19721  fmcfil  20625
  Copyright terms: Public domain W3C validator