Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmul01 Structured version   Unicode version

Theorem fmul01 29686
Description: Multiplying a finite number of values in [ 0 , 1 ] , gives the final product itself a number in [ 0 , 1 ]. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
fmul01.1  |-  F/_ i B
fmul01.2  |-  F/ i
ph
fmul01.3  |-  A  =  seq L (  x.  ,  B )
fmul01.4  |-  ( ph  ->  L  e.  ZZ )
fmul01.5  |-  ( ph  ->  M  e.  ( ZZ>= `  L ) )
fmul01.6  |-  ( ph  ->  K  e.  ( L ... M ) )
fmul01.7  |-  ( (
ph  /\  i  e.  ( L ... M ) )  ->  ( B `  i )  e.  RR )
fmul01.8  |-  ( (
ph  /\  i  e.  ( L ... M ) )  ->  0  <_  ( B `  i ) )
fmul01.9  |-  ( (
ph  /\  i  e.  ( L ... M ) )  ->  ( B `  i )  <_  1
)
Assertion
Ref Expression
fmul01  |-  ( ph  ->  ( 0  <_  ( A `  K )  /\  ( A `  K
)  <_  1 ) )
Distinct variable groups:    i, L    i, M
Allowed substitution hints:    ph( i)    A( i)    B( i)    K( i)

Proof of Theorem fmul01
Dummy variables  j 
k  l are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmul01.6 . 2  |-  ( ph  ->  K  e.  ( L ... M ) )
2 fveq2 5688 . . . . . 6  |-  ( k  =  L  ->  ( A `  k )  =  ( A `  L ) )
32breq2d 4301 . . . . 5  |-  ( k  =  L  ->  (
0  <_  ( A `  k )  <->  0  <_  ( A `  L ) ) )
42breq1d 4299 . . . . 5  |-  ( k  =  L  ->  (
( A `  k
)  <_  1  <->  ( A `  L )  <_  1
) )
53, 4anbi12d 705 . . . 4  |-  ( k  =  L  ->  (
( 0  <_  ( A `  k )  /\  ( A `  k
)  <_  1 )  <-> 
( 0  <_  ( A `  L )  /\  ( A `  L
)  <_  1 ) ) )
65imbi2d 316 . . 3  |-  ( k  =  L  ->  (
( ph  ->  ( 0  <_  ( A `  k )  /\  ( A `  k )  <_  1 ) )  <->  ( ph  ->  ( 0  <_  ( A `  L )  /\  ( A `  L
)  <_  1 ) ) ) )
7 fveq2 5688 . . . . . 6  |-  ( k  =  j  ->  ( A `  k )  =  ( A `  j ) )
87breq2d 4301 . . . . 5  |-  ( k  =  j  ->  (
0  <_  ( A `  k )  <->  0  <_  ( A `  j ) ) )
97breq1d 4299 . . . . 5  |-  ( k  =  j  ->  (
( A `  k
)  <_  1  <->  ( A `  j )  <_  1
) )
108, 9anbi12d 705 . . . 4  |-  ( k  =  j  ->  (
( 0  <_  ( A `  k )  /\  ( A `  k
)  <_  1 )  <-> 
( 0  <_  ( A `  j )  /\  ( A `  j
)  <_  1 ) ) )
1110imbi2d 316 . . 3  |-  ( k  =  j  ->  (
( ph  ->  ( 0  <_  ( A `  k )  /\  ( A `  k )  <_  1 ) )  <->  ( ph  ->  ( 0  <_  ( A `  j )  /\  ( A `  j
)  <_  1 ) ) ) )
12 fveq2 5688 . . . . . 6  |-  ( k  =  ( j  +  1 )  ->  ( A `  k )  =  ( A `  ( j  +  1 ) ) )
1312breq2d 4301 . . . . 5  |-  ( k  =  ( j  +  1 )  ->  (
0  <_  ( A `  k )  <->  0  <_  ( A `  ( j  +  1 ) ) ) )
1412breq1d 4299 . . . . 5  |-  ( k  =  ( j  +  1 )  ->  (
( A `  k
)  <_  1  <->  ( A `  ( j  +  1 ) )  <_  1
) )
1513, 14anbi12d 705 . . . 4  |-  ( k  =  ( j  +  1 )  ->  (
( 0  <_  ( A `  k )  /\  ( A `  k
)  <_  1 )  <-> 
( 0  <_  ( A `  ( j  +  1 ) )  /\  ( A `  ( j  +  1 ) )  <_  1
) ) )
1615imbi2d 316 . . 3  |-  ( k  =  ( j  +  1 )  ->  (
( ph  ->  ( 0  <_  ( A `  k )  /\  ( A `  k )  <_  1 ) )  <->  ( ph  ->  ( 0  <_  ( A `  ( j  +  1 ) )  /\  ( A `  ( j  +  1 ) )  <_  1
) ) ) )
17 fveq2 5688 . . . . . 6  |-  ( k  =  K  ->  ( A `  k )  =  ( A `  K ) )
1817breq2d 4301 . . . . 5  |-  ( k  =  K  ->  (
0  <_  ( A `  k )  <->  0  <_  ( A `  K ) ) )
1917breq1d 4299 . . . . 5  |-  ( k  =  K  ->  (
( A `  k
)  <_  1  <->  ( A `  K )  <_  1
) )
2018, 19anbi12d 705 . . . 4  |-  ( k  =  K  ->  (
( 0  <_  ( A `  k )  /\  ( A `  k
)  <_  1 )  <-> 
( 0  <_  ( A `  K )  /\  ( A `  K
)  <_  1 ) ) )
2120imbi2d 316 . . 3  |-  ( k  =  K  ->  (
( ph  ->  ( 0  <_  ( A `  k )  /\  ( A `  k )  <_  1 ) )  <->  ( ph  ->  ( 0  <_  ( A `  K )  /\  ( A `  K
)  <_  1 ) ) ) )
22 fmul01.4 . . . . . . . . . 10  |-  ( ph  ->  L  e.  ZZ )
2322zred 10743 . . . . . . . . 9  |-  ( ph  ->  L  e.  RR )
2423leidd 9902 . . . . . . . 8  |-  ( ph  ->  L  <_  L )
25 fmul01.5 . . . . . . . . 9  |-  ( ph  ->  M  e.  ( ZZ>= `  L ) )
26 eluzelz 10866 . . . . . . . . . . 11  |-  ( M  e.  ( ZZ>= `  L
)  ->  M  e.  ZZ )
2725, 26syl 16 . . . . . . . . . 10  |-  ( ph  ->  M  e.  ZZ )
28 eluz 10870 . . . . . . . . . 10  |-  ( ( L  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  e.  (
ZZ>= `  L )  <->  L  <_  M ) )
2922, 27, 28syl2anc 656 . . . . . . . . 9  |-  ( ph  ->  ( M  e.  (
ZZ>= `  L )  <->  L  <_  M ) )
3025, 29mpbid 210 . . . . . . . 8  |-  ( ph  ->  L  <_  M )
31 elfz 11439 . . . . . . . . 9  |-  ( ( L  e.  ZZ  /\  L  e.  ZZ  /\  M  e.  ZZ )  ->  ( L  e.  ( L ... M )  <->  ( L  <_  L  /\  L  <_  M ) ) )
3222, 22, 27, 31syl3anc 1213 . . . . . . . 8  |-  ( ph  ->  ( L  e.  ( L ... M )  <-> 
( L  <_  L  /\  L  <_  M ) ) )
3324, 30, 32mpbir2and 908 . . . . . . 7  |-  ( ph  ->  L  e.  ( L ... M ) )
34 id 22 . . . . . . . 8  |-  ( ph  ->  ph )
3534, 33jca 529 . . . . . . 7  |-  ( ph  ->  ( ph  /\  L  e.  ( L ... M
) ) )
36 fmul01.2 . . . . . . . . . 10  |-  F/ i
ph
37 nfv 1678 . . . . . . . . . 10  |-  F/ i  L  e.  ( L ... M )
3836, 37nfan 1865 . . . . . . . . 9  |-  F/ i ( ph  /\  L  e.  ( L ... M
) )
39 nfcv 2577 . . . . . . . . . 10  |-  F/_ i
0
40 nfcv 2577 . . . . . . . . . 10  |-  F/_ i  <_
41 fmul01.1 . . . . . . . . . . 11  |-  F/_ i B
42 nfcv 2577 . . . . . . . . . . 11  |-  F/_ i L
4341, 42nffv 5695 . . . . . . . . . 10  |-  F/_ i
( B `  L
)
4439, 40, 43nfbr 4333 . . . . . . . . 9  |-  F/ i 0  <_  ( B `  L )
4538, 44nfim 1857 . . . . . . . 8  |-  F/ i ( ( ph  /\  L  e.  ( L ... M ) )  -> 
0  <_  ( B `  L ) )
46 eleq1 2501 . . . . . . . . . 10  |-  ( i  =  L  ->  (
i  e.  ( L ... M )  <->  L  e.  ( L ... M ) ) )
4746anbi2d 698 . . . . . . . . 9  |-  ( i  =  L  ->  (
( ph  /\  i  e.  ( L ... M
) )  <->  ( ph  /\  L  e.  ( L ... M ) ) ) )
48 fveq2 5688 . . . . . . . . . 10  |-  ( i  =  L  ->  ( B `  i )  =  ( B `  L ) )
4948breq2d 4301 . . . . . . . . 9  |-  ( i  =  L  ->  (
0  <_  ( B `  i )  <->  0  <_  ( B `  L ) ) )
5047, 49imbi12d 320 . . . . . . . 8  |-  ( i  =  L  ->  (
( ( ph  /\  i  e.  ( L ... M ) )  -> 
0  <_  ( B `  i ) )  <->  ( ( ph  /\  L  e.  ( L ... M ) )  ->  0  <_  ( B `  L ) ) ) )
51 fmul01.8 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( L ... M ) )  ->  0  <_  ( B `  i ) )
5245, 50, 51vtoclg1f 3026 . . . . . . 7  |-  ( L  e.  ( L ... M )  ->  (
( ph  /\  L  e.  ( L ... M
) )  ->  0  <_  ( B `  L
) ) )
5333, 35, 52sylc 60 . . . . . 6  |-  ( ph  ->  0  <_  ( B `  L ) )
54 fmul01.3 . . . . . . . 8  |-  A  =  seq L (  x.  ,  B )
5554fveq1i 5689 . . . . . . 7  |-  ( A `
 L )  =  (  seq L (  x.  ,  B ) `
 L )
56 seq1 11815 . . . . . . . 8  |-  ( L  e.  ZZ  ->  (  seq L (  x.  ,  B ) `  L
)  =  ( B `
 L ) )
5722, 56syl 16 . . . . . . 7  |-  ( ph  ->  (  seq L (  x.  ,  B ) `
 L )  =  ( B `  L
) )
5855, 57syl5eq 2485 . . . . . 6  |-  ( ph  ->  ( A `  L
)  =  ( B `
 L ) )
5953, 58breqtrrd 4315 . . . . 5  |-  ( ph  ->  0  <_  ( A `  L ) )
60 nfcv 2577 . . . . . . . . . 10  |-  F/_ i
1
6143, 40, 60nfbr 4333 . . . . . . . . 9  |-  F/ i ( B `  L
)  <_  1
6238, 61nfim 1857 . . . . . . . 8  |-  F/ i ( ( ph  /\  L  e.  ( L ... M ) )  -> 
( B `  L
)  <_  1 )
6348breq1d 4299 . . . . . . . . 9  |-  ( i  =  L  ->  (
( B `  i
)  <_  1  <->  ( B `  L )  <_  1
) )
6447, 63imbi12d 320 . . . . . . . 8  |-  ( i  =  L  ->  (
( ( ph  /\  i  e.  ( L ... M ) )  -> 
( B `  i
)  <_  1 )  <-> 
( ( ph  /\  L  e.  ( L ... M ) )  -> 
( B `  L
)  <_  1 ) ) )
65 fmul01.9 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( L ... M ) )  ->  ( B `  i )  <_  1
)
6662, 64, 65vtoclg1f 3026 . . . . . . 7  |-  ( L  e.  ( L ... M )  ->  (
( ph  /\  L  e.  ( L ... M
) )  ->  ( B `  L )  <_  1 ) )
6733, 35, 66sylc 60 . . . . . 6  |-  ( ph  ->  ( B `  L
)  <_  1 )
6858, 67eqbrtrd 4309 . . . . 5  |-  ( ph  ->  ( A `  L
)  <_  1 )
6959, 68jca 529 . . . 4  |-  ( ph  ->  ( 0  <_  ( A `  L )  /\  ( A `  L
)  <_  1 ) )
7069a1i 11 . . 3  |-  ( M  e.  ( ZZ>= `  L
)  ->  ( ph  ->  ( 0  <_  ( A `  L )  /\  ( A `  L
)  <_  1 ) ) )
71 elfzouz 11553 . . . . . . . . . 10  |-  ( j  e.  ( L..^ M
)  ->  j  e.  ( ZZ>= `  L )
)
72713ad2ant1 1004 . . . . . . . . 9  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  j  e.  (
ZZ>= `  L ) )
73 simpl3 988 . . . . . . . . . 10  |-  ( ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_  ( A `  j )  /\  ( A `  j )  <_  1 ) )  /\  ph )  /\  k  e.  ( L ... j
) )  ->  ph )
74 elfzouz2 11562 . . . . . . . . . . . . 13  |-  ( j  e.  ( L..^ M
)  ->  M  e.  ( ZZ>= `  j )
)
75 fzss2 11494 . . . . . . . . . . . . 13  |-  ( M  e.  ( ZZ>= `  j
)  ->  ( L ... j )  C_  ( L ... M ) )
7674, 75syl 16 . . . . . . . . . . . 12  |-  ( j  e.  ( L..^ M
)  ->  ( L ... j )  C_  ( L ... M ) )
77763ad2ant1 1004 . . . . . . . . . . 11  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  ( L ... j )  C_  ( L ... M ) )
7877sselda 3353 . . . . . . . . . 10  |-  ( ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_  ( A `  j )  /\  ( A `  j )  <_  1 ) )  /\  ph )  /\  k  e.  ( L ... j
) )  ->  k  e.  ( L ... M
) )
79 nfv 1678 . . . . . . . . . . . . 13  |-  F/ i  k  e.  ( L ... M )
8036, 79nfan 1865 . . . . . . . . . . . 12  |-  F/ i ( ph  /\  k  e.  ( L ... M
) )
81 nfcv 2577 . . . . . . . . . . . . . 14  |-  F/_ i
k
8241, 81nffv 5695 . . . . . . . . . . . . 13  |-  F/_ i
( B `  k
)
8382nfel1 2587 . . . . . . . . . . . 12  |-  F/ i ( B `  k
)  e.  RR
8480, 83nfim 1857 . . . . . . . . . . 11  |-  F/ i ( ( ph  /\  k  e.  ( L ... M ) )  -> 
( B `  k
)  e.  RR )
85 eleq1 2501 . . . . . . . . . . . . 13  |-  ( i  =  k  ->  (
i  e.  ( L ... M )  <->  k  e.  ( L ... M ) ) )
8685anbi2d 698 . . . . . . . . . . . 12  |-  ( i  =  k  ->  (
( ph  /\  i  e.  ( L ... M
) )  <->  ( ph  /\  k  e.  ( L ... M ) ) ) )
87 fveq2 5688 . . . . . . . . . . . . 13  |-  ( i  =  k  ->  ( B `  i )  =  ( B `  k ) )
8887eleq1d 2507 . . . . . . . . . . . 12  |-  ( i  =  k  ->  (
( B `  i
)  e.  RR  <->  ( B `  k )  e.  RR ) )
8986, 88imbi12d 320 . . . . . . . . . . 11  |-  ( i  =  k  ->  (
( ( ph  /\  i  e.  ( L ... M ) )  -> 
( B `  i
)  e.  RR )  <-> 
( ( ph  /\  k  e.  ( L ... M ) )  -> 
( B `  k
)  e.  RR ) ) )
90 fmul01.7 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  ( L ... M ) )  ->  ( B `  i )  e.  RR )
9184, 89, 90chvar 1962 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( L ... M ) )  ->  ( B `  k )  e.  RR )
9273, 78, 91syl2anc 656 . . . . . . . . 9  |-  ( ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_  ( A `  j )  /\  ( A `  j )  <_  1 ) )  /\  ph )  /\  k  e.  ( L ... j
) )  ->  ( B `  k )  e.  RR )
93 remulcl 9363 . . . . . . . . . 10  |-  ( ( k  e.  RR  /\  l  e.  RR )  ->  ( k  x.  l
)  e.  RR )
9493adantl 463 . . . . . . . . 9  |-  ( ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_  ( A `  j )  /\  ( A `  j )  <_  1 ) )  /\  ph )  /\  ( k  e.  RR  /\  l  e.  RR ) )  -> 
( k  x.  l
)  e.  RR )
9572, 92, 94seqcl 11822 . . . . . . . 8  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  (  seq L
(  x.  ,  B
) `  j )  e.  RR )
96 simp3 985 . . . . . . . . 9  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  ph )
97 fzofzp1 11620 . . . . . . . . . 10  |-  ( j  e.  ( L..^ M
)  ->  ( j  +  1 )  e.  ( L ... M
) )
98973ad2ant1 1004 . . . . . . . . 9  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  ( j  +  1 )  e.  ( L ... M ) )
99 nfv 1678 . . . . . . . . . . . . 13  |-  F/ i ( j  +  1 )  e.  ( L ... M )
10036, 99nfan 1865 . . . . . . . . . . . 12  |-  F/ i ( ph  /\  (
j  +  1 )  e.  ( L ... M ) )
101 nfcv 2577 . . . . . . . . . . . . . 14  |-  F/_ i
( j  +  1 )
10241, 101nffv 5695 . . . . . . . . . . . . 13  |-  F/_ i
( B `  (
j  +  1 ) )
103102nfel1 2587 . . . . . . . . . . . 12  |-  F/ i ( B `  (
j  +  1 ) )  e.  RR
104100, 103nfim 1857 . . . . . . . . . . 11  |-  F/ i ( ( ph  /\  ( j  +  1 )  e.  ( L ... M ) )  ->  ( B `  ( j  +  1 ) )  e.  RR )
105 eleq1 2501 . . . . . . . . . . . . 13  |-  ( i  =  ( j  +  1 )  ->  (
i  e.  ( L ... M )  <->  ( j  +  1 )  e.  ( L ... M
) ) )
106105anbi2d 698 . . . . . . . . . . . 12  |-  ( i  =  ( j  +  1 )  ->  (
( ph  /\  i  e.  ( L ... M
) )  <->  ( ph  /\  ( j  +  1 )  e.  ( L ... M ) ) ) )
107 fveq2 5688 . . . . . . . . . . . . 13  |-  ( i  =  ( j  +  1 )  ->  ( B `  i )  =  ( B `  ( j  +  1 ) ) )
108107eleq1d 2507 . . . . . . . . . . . 12  |-  ( i  =  ( j  +  1 )  ->  (
( B `  i
)  e.  RR  <->  ( B `  ( j  +  1 ) )  e.  RR ) )
109106, 108imbi12d 320 . . . . . . . . . . 11  |-  ( i  =  ( j  +  1 )  ->  (
( ( ph  /\  i  e.  ( L ... M ) )  -> 
( B `  i
)  e.  RR )  <-> 
( ( ph  /\  ( j  +  1 )  e.  ( L ... M ) )  ->  ( B `  ( j  +  1 ) )  e.  RR ) ) )
110104, 109, 90vtoclg1f 3026 . . . . . . . . . 10  |-  ( ( j  +  1 )  e.  ( L ... M )  ->  (
( ph  /\  (
j  +  1 )  e.  ( L ... M ) )  -> 
( B `  (
j  +  1 ) )  e.  RR ) )
111110anabsi7 810 . . . . . . . . 9  |-  ( (
ph  /\  ( j  +  1 )  e.  ( L ... M
) )  ->  ( B `  ( j  +  1 ) )  e.  RR )
11296, 98, 111syl2anc 656 . . . . . . . 8  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  ( B `  ( j  +  1 ) )  e.  RR )
113 pm3.35 584 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ph  ->  ( 0  <_  ( A `  j )  /\  ( A `  j
)  <_  1 ) ) )  ->  (
0  <_  ( A `  j )  /\  ( A `  j )  <_  1 ) )
114113ancoms 450 . . . . . . . . . . 11  |-  ( ( ( ph  ->  (
0  <_  ( A `  j )  /\  ( A `  j )  <_  1 ) )  /\  ph )  ->  ( 0  <_  ( A `  j )  /\  ( A `  j )  <_  1 ) )
115 simpl 454 . . . . . . . . . . 11  |-  ( ( 0  <_  ( A `  j )  /\  ( A `  j )  <_  1 )  ->  0  <_  ( A `  j
) )
116114, 115syl 16 . . . . . . . . . 10  |-  ( ( ( ph  ->  (
0  <_  ( A `  j )  /\  ( A `  j )  <_  1 ) )  /\  ph )  ->  0  <_  ( A `  j ) )
1171163adant1 1001 . . . . . . . . 9  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  0  <_  ( A `  j )
)
11854fveq1i 5689 . . . . . . . . 9  |-  ( A `
 j )  =  (  seq L (  x.  ,  B ) `
 j )
119117, 118syl6breq 4328 . . . . . . . 8  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  0  <_  (  seq L (  x.  ,  B ) `  j
) )
120 simp1 983 . . . . . . . . 9  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  j  e.  ( L..^ M ) )
12197adantl 463 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( L..^ M ) )  ->  ( j  +  1 )  e.  ( L ... M ) )
122 simpl 454 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( L..^ M ) )  ->  ph )
123122, 121jca 529 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( L..^ M ) )  ->  ( ph  /\  ( j  +  1 )  e.  ( L ... M ) ) )
12439, 40, 102nfbr 4333 . . . . . . . . . . . 12  |-  F/ i 0  <_  ( B `  ( j  +  1 ) )
125100, 124nfim 1857 . . . . . . . . . . 11  |-  F/ i ( ( ph  /\  ( j  +  1 )  e.  ( L ... M ) )  ->  0  <_  ( B `  ( j  +  1 ) ) )
126107breq2d 4301 . . . . . . . . . . . 12  |-  ( i  =  ( j  +  1 )  ->  (
0  <_  ( B `  i )  <->  0  <_  ( B `  ( j  +  1 ) ) ) )
127106, 126imbi12d 320 . . . . . . . . . . 11  |-  ( i  =  ( j  +  1 )  ->  (
( ( ph  /\  i  e.  ( L ... M ) )  -> 
0  <_  ( B `  i ) )  <->  ( ( ph  /\  ( j  +  1 )  e.  ( L ... M ) )  ->  0  <_  ( B `  ( j  +  1 ) ) ) ) )
128125, 127, 51vtoclg1f 3026 . . . . . . . . . 10  |-  ( ( j  +  1 )  e.  ( L ... M )  ->  (
( ph  /\  (
j  +  1 )  e.  ( L ... M ) )  -> 
0  <_  ( B `  ( j  +  1 ) ) ) )
129121, 123, 128sylc 60 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( L..^ M ) )  ->  0  <_  ( B `  ( j  +  1 ) ) )
13096, 120, 129syl2anc 656 . . . . . . . 8  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  0  <_  ( B `  ( j  +  1 ) ) )
13195, 112, 119, 130mulge0d 9912 . . . . . . 7  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  0  <_  (
(  seq L (  x.  ,  B ) `  j )  x.  ( B `  ( j  +  1 ) ) ) )
132 seqp1 11817 . . . . . . . 8  |-  ( j  e.  ( ZZ>= `  L
)  ->  (  seq L (  x.  ,  B ) `  (
j  +  1 ) )  =  ( (  seq L (  x.  ,  B ) `  j )  x.  ( B `  ( j  +  1 ) ) ) )
13372, 132syl 16 . . . . . . 7  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  (  seq L
(  x.  ,  B
) `  ( j  +  1 ) )  =  ( (  seq L (  x.  ,  B ) `  j
)  x.  ( B `
 ( j  +  1 ) ) ) )
134131, 133breqtrrd 4315 . . . . . 6  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  0  <_  (  seq L (  x.  ,  B ) `  (
j  +  1 ) ) )
13554fveq1i 5689 . . . . . 6  |-  ( A `
 ( j  +  1 ) )  =  (  seq L (  x.  ,  B ) `
 ( j  +  1 ) )
136134, 135syl6breqr 4329 . . . . 5  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  0  <_  ( A `  ( j  +  1 ) ) )
13795, 112remulcld 9410 . . . . . . . 8  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  ( (  seq L (  x.  ,  B ) `  j
)  x.  ( B `
 ( j  +  1 ) ) )  e.  RR )
138 1re 9381 . . . . . . . . 9  |-  1  e.  RR
139138a1i 11 . . . . . . . 8  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  1  e.  RR )
14096, 98jca 529 . . . . . . . . . . 11  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  ( ph  /\  ( j  +  1 )  e.  ( L ... M ) ) )
141102, 40, 60nfbr 4333 . . . . . . . . . . . . 13  |-  F/ i ( B `  (
j  +  1 ) )  <_  1
142100, 141nfim 1857 . . . . . . . . . . . 12  |-  F/ i ( ( ph  /\  ( j  +  1 )  e.  ( L ... M ) )  ->  ( B `  ( j  +  1 ) )  <_  1
)
143107breq1d 4299 . . . . . . . . . . . . 13  |-  ( i  =  ( j  +  1 )  ->  (
( B `  i
)  <_  1  <->  ( B `  ( j  +  1 ) )  <_  1
) )
144106, 143imbi12d 320 . . . . . . . . . . . 12  |-  ( i  =  ( j  +  1 )  ->  (
( ( ph  /\  i  e.  ( L ... M ) )  -> 
( B `  i
)  <_  1 )  <-> 
( ( ph  /\  ( j  +  1 )  e.  ( L ... M ) )  ->  ( B `  ( j  +  1 ) )  <_  1
) ) )
145142, 144, 65vtoclg1f 3026 . . . . . . . . . . 11  |-  ( ( j  +  1 )  e.  ( L ... M )  ->  (
( ph  /\  (
j  +  1 )  e.  ( L ... M ) )  -> 
( B `  (
j  +  1 ) )  <_  1 ) )
14698, 140, 145sylc 60 . . . . . . . . . 10  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  ( B `  ( j  +  1 ) )  <_  1
)
147112, 139, 95, 119, 146lemul2ad 10269 . . . . . . . . 9  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  ( (  seq L (  x.  ,  B ) `  j
)  x.  ( B `
 ( j  +  1 ) ) )  <_  ( (  seq L (  x.  ,  B ) `  j
)  x.  1 ) )
14895recnd 9408 . . . . . . . . . 10  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  (  seq L
(  x.  ,  B
) `  j )  e.  CC )
149148mulid1d 9399 . . . . . . . . 9  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  ( (  seq L (  x.  ,  B ) `  j
)  x.  1 )  =  (  seq L
(  x.  ,  B
) `  j )
)
150147, 149breqtrd 4313 . . . . . . . 8  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  ( (  seq L (  x.  ,  B ) `  j
)  x.  ( B `
 ( j  +  1 ) ) )  <_  (  seq L
(  x.  ,  B
) `  j )
)
151 simp2 984 . . . . . . . . . 10  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  ( ph  ->  ( 0  <_  ( A `  j )  /\  ( A `  j )  <_  1 ) ) )
152113simprd 460 . . . . . . . . . 10  |-  ( (
ph  /\  ( ph  ->  ( 0  <_  ( A `  j )  /\  ( A `  j
)  <_  1 ) ) )  ->  ( A `  j )  <_  1 )
15396, 151, 152syl2anc 656 . . . . . . . . 9  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  ( A `  j )  <_  1
)
154118, 153syl5eqbrr 4323 . . . . . . . 8  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  (  seq L
(  x.  ,  B
) `  j )  <_  1 )
155137, 95, 139, 150, 154letrd 9524 . . . . . . 7  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  ( (  seq L (  x.  ,  B ) `  j
)  x.  ( B `
 ( j  +  1 ) ) )  <_  1 )
156133, 155eqbrtrd 4309 . . . . . 6  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  (  seq L
(  x.  ,  B
) `  ( j  +  1 ) )  <_  1 )
157135, 156syl5eqbr 4322 . . . . 5  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  ( A `  ( j  +  1 ) )  <_  1
)
158136, 157jca 529 . . . 4  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  ( 0  <_ 
( A `  (
j  +  1 ) )  /\  ( A `
 ( j  +  1 ) )  <_ 
1 ) )
1591583exp 1181 . . 3  |-  ( j  e.  ( L..^ M
)  ->  ( ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  ->  ( ph  ->  ( 0  <_ 
( A `  (
j  +  1 ) )  /\  ( A `
 ( j  +  1 ) )  <_ 
1 ) ) ) )
1606, 11, 16, 21, 70, 159fzind2 11633 . 2  |-  ( K  e.  ( L ... M )  ->  ( ph  ->  ( 0  <_ 
( A `  K
)  /\  ( A `  K )  <_  1
) ) )
1611, 160mpcom 36 1  |-  ( ph  ->  ( 0  <_  ( A `  K )  /\  ( A `  K
)  <_  1 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 960    = wceq 1364   F/wnf 1594    e. wcel 1761   F/_wnfc 2564    C_ wss 3325   class class class wbr 4289   ` cfv 5415  (class class class)co 6090   RRcr 9277   0cc0 9278   1c1 9279    + caddc 9281    x. cmul 9283    <_ cle 9415   ZZcz 10642   ZZ>=cuz 10857   ...cfz 11433  ..^cfzo 11544    seqcseq 11802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-n0 10576  df-z 10643  df-uz 10858  df-fz 11434  df-fzo 11545  df-seq 11803
This theorem is referenced by:  fmul01lt1lem1  29690  fmul01lt1lem2  29691
  Copyright terms: Public domain W3C validator