Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmul01 Structured version   Visualization version   Unicode version

Theorem fmul01 37696
Description: Multiplying a finite number of values in [ 0 , 1 ] , gives the final product itself a number in [ 0 , 1 ]. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
fmul01.1  |-  F/_ i B
fmul01.2  |-  F/ i
ph
fmul01.3  |-  A  =  seq L (  x.  ,  B )
fmul01.4  |-  ( ph  ->  L  e.  ZZ )
fmul01.5  |-  ( ph  ->  M  e.  ( ZZ>= `  L ) )
fmul01.6  |-  ( ph  ->  K  e.  ( L ... M ) )
fmul01.7  |-  ( (
ph  /\  i  e.  ( L ... M ) )  ->  ( B `  i )  e.  RR )
fmul01.8  |-  ( (
ph  /\  i  e.  ( L ... M ) )  ->  0  <_  ( B `  i ) )
fmul01.9  |-  ( (
ph  /\  i  e.  ( L ... M ) )  ->  ( B `  i )  <_  1
)
Assertion
Ref Expression
fmul01  |-  ( ph  ->  ( 0  <_  ( A `  K )  /\  ( A `  K
)  <_  1 ) )
Distinct variable groups:    i, L    i, M
Allowed substitution hints:    ph( i)    A( i)    B( i)    K( i)

Proof of Theorem fmul01
Dummy variables  j 
k  l are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmul01.6 . 2  |-  ( ph  ->  K  e.  ( L ... M ) )
2 fveq2 5888 . . . . . 6  |-  ( k  =  L  ->  ( A `  k )  =  ( A `  L ) )
32breq2d 4428 . . . . 5  |-  ( k  =  L  ->  (
0  <_  ( A `  k )  <->  0  <_  ( A `  L ) ) )
42breq1d 4426 . . . . 5  |-  ( k  =  L  ->  (
( A `  k
)  <_  1  <->  ( A `  L )  <_  1
) )
53, 4anbi12d 722 . . . 4  |-  ( k  =  L  ->  (
( 0  <_  ( A `  k )  /\  ( A `  k
)  <_  1 )  <-> 
( 0  <_  ( A `  L )  /\  ( A `  L
)  <_  1 ) ) )
65imbi2d 322 . . 3  |-  ( k  =  L  ->  (
( ph  ->  ( 0  <_  ( A `  k )  /\  ( A `  k )  <_  1 ) )  <->  ( ph  ->  ( 0  <_  ( A `  L )  /\  ( A `  L
)  <_  1 ) ) ) )
7 fveq2 5888 . . . . . 6  |-  ( k  =  j  ->  ( A `  k )  =  ( A `  j ) )
87breq2d 4428 . . . . 5  |-  ( k  =  j  ->  (
0  <_  ( A `  k )  <->  0  <_  ( A `  j ) ) )
97breq1d 4426 . . . . 5  |-  ( k  =  j  ->  (
( A `  k
)  <_  1  <->  ( A `  j )  <_  1
) )
108, 9anbi12d 722 . . . 4  |-  ( k  =  j  ->  (
( 0  <_  ( A `  k )  /\  ( A `  k
)  <_  1 )  <-> 
( 0  <_  ( A `  j )  /\  ( A `  j
)  <_  1 ) ) )
1110imbi2d 322 . . 3  |-  ( k  =  j  ->  (
( ph  ->  ( 0  <_  ( A `  k )  /\  ( A `  k )  <_  1 ) )  <->  ( ph  ->  ( 0  <_  ( A `  j )  /\  ( A `  j
)  <_  1 ) ) ) )
12 fveq2 5888 . . . . . 6  |-  ( k  =  ( j  +  1 )  ->  ( A `  k )  =  ( A `  ( j  +  1 ) ) )
1312breq2d 4428 . . . . 5  |-  ( k  =  ( j  +  1 )  ->  (
0  <_  ( A `  k )  <->  0  <_  ( A `  ( j  +  1 ) ) ) )
1412breq1d 4426 . . . . 5  |-  ( k  =  ( j  +  1 )  ->  (
( A `  k
)  <_  1  <->  ( A `  ( j  +  1 ) )  <_  1
) )
1513, 14anbi12d 722 . . . 4  |-  ( k  =  ( j  +  1 )  ->  (
( 0  <_  ( A `  k )  /\  ( A `  k
)  <_  1 )  <-> 
( 0  <_  ( A `  ( j  +  1 ) )  /\  ( A `  ( j  +  1 ) )  <_  1
) ) )
1615imbi2d 322 . . 3  |-  ( k  =  ( j  +  1 )  ->  (
( ph  ->  ( 0  <_  ( A `  k )  /\  ( A `  k )  <_  1 ) )  <->  ( ph  ->  ( 0  <_  ( A `  ( j  +  1 ) )  /\  ( A `  ( j  +  1 ) )  <_  1
) ) ) )
17 fveq2 5888 . . . . . 6  |-  ( k  =  K  ->  ( A `  k )  =  ( A `  K ) )
1817breq2d 4428 . . . . 5  |-  ( k  =  K  ->  (
0  <_  ( A `  k )  <->  0  <_  ( A `  K ) ) )
1917breq1d 4426 . . . . 5  |-  ( k  =  K  ->  (
( A `  k
)  <_  1  <->  ( A `  K )  <_  1
) )
2018, 19anbi12d 722 . . . 4  |-  ( k  =  K  ->  (
( 0  <_  ( A `  k )  /\  ( A `  k
)  <_  1 )  <-> 
( 0  <_  ( A `  K )  /\  ( A `  K
)  <_  1 ) ) )
2120imbi2d 322 . . 3  |-  ( k  =  K  ->  (
( ph  ->  ( 0  <_  ( A `  k )  /\  ( A `  k )  <_  1 ) )  <->  ( ph  ->  ( 0  <_  ( A `  K )  /\  ( A `  K
)  <_  1 ) ) ) )
22 fmul01.4 . . . . . . . . . 10  |-  ( ph  ->  L  e.  ZZ )
2322zred 11069 . . . . . . . . 9  |-  ( ph  ->  L  e.  RR )
2423leidd 10208 . . . . . . . 8  |-  ( ph  ->  L  <_  L )
25 fmul01.5 . . . . . . . . 9  |-  ( ph  ->  M  e.  ( ZZ>= `  L ) )
26 eluzelz 11197 . . . . . . . . . . 11  |-  ( M  e.  ( ZZ>= `  L
)  ->  M  e.  ZZ )
2725, 26syl 17 . . . . . . . . . 10  |-  ( ph  ->  M  e.  ZZ )
28 eluz 11201 . . . . . . . . . 10  |-  ( ( L  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  e.  (
ZZ>= `  L )  <->  L  <_  M ) )
2922, 27, 28syl2anc 671 . . . . . . . . 9  |-  ( ph  ->  ( M  e.  (
ZZ>= `  L )  <->  L  <_  M ) )
3025, 29mpbid 215 . . . . . . . 8  |-  ( ph  ->  L  <_  M )
31 elfz 11819 . . . . . . . . 9  |-  ( ( L  e.  ZZ  /\  L  e.  ZZ  /\  M  e.  ZZ )  ->  ( L  e.  ( L ... M )  <->  ( L  <_  L  /\  L  <_  M ) ) )
3222, 22, 27, 31syl3anc 1276 . . . . . . . 8  |-  ( ph  ->  ( L  e.  ( L ... M )  <-> 
( L  <_  L  /\  L  <_  M ) ) )
3324, 30, 32mpbir2and 938 . . . . . . 7  |-  ( ph  ->  L  e.  ( L ... M ) )
3433ancli 558 . . . . . . 7  |-  ( ph  ->  ( ph  /\  L  e.  ( L ... M
) ) )
35 fmul01.2 . . . . . . . . . 10  |-  F/ i
ph
36 nfv 1772 . . . . . . . . . 10  |-  F/ i  L  e.  ( L ... M )
3735, 36nfan 2022 . . . . . . . . 9  |-  F/ i ( ph  /\  L  e.  ( L ... M
) )
38 nfcv 2603 . . . . . . . . . 10  |-  F/_ i
0
39 nfcv 2603 . . . . . . . . . 10  |-  F/_ i  <_
40 fmul01.1 . . . . . . . . . . 11  |-  F/_ i B
41 nfcv 2603 . . . . . . . . . . 11  |-  F/_ i L
4240, 41nffv 5895 . . . . . . . . . 10  |-  F/_ i
( B `  L
)
4338, 39, 42nfbr 4461 . . . . . . . . 9  |-  F/ i 0  <_  ( B `  L )
4437, 43nfim 2014 . . . . . . . 8  |-  F/ i ( ( ph  /\  L  e.  ( L ... M ) )  -> 
0  <_  ( B `  L ) )
45 eleq1 2528 . . . . . . . . . 10  |-  ( i  =  L  ->  (
i  e.  ( L ... M )  <->  L  e.  ( L ... M ) ) )
4645anbi2d 715 . . . . . . . . 9  |-  ( i  =  L  ->  (
( ph  /\  i  e.  ( L ... M
) )  <->  ( ph  /\  L  e.  ( L ... M ) ) ) )
47 fveq2 5888 . . . . . . . . . 10  |-  ( i  =  L  ->  ( B `  i )  =  ( B `  L ) )
4847breq2d 4428 . . . . . . . . 9  |-  ( i  =  L  ->  (
0  <_  ( B `  i )  <->  0  <_  ( B `  L ) ) )
4946, 48imbi12d 326 . . . . . . . 8  |-  ( i  =  L  ->  (
( ( ph  /\  i  e.  ( L ... M ) )  -> 
0  <_  ( B `  i ) )  <->  ( ( ph  /\  L  e.  ( L ... M ) )  ->  0  <_  ( B `  L ) ) ) )
50 fmul01.8 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( L ... M ) )  ->  0  <_  ( B `  i ) )
5144, 49, 50vtoclg1f 3118 . . . . . . 7  |-  ( L  e.  ( L ... M )  ->  (
( ph  /\  L  e.  ( L ... M
) )  ->  0  <_  ( B `  L
) ) )
5233, 34, 51sylc 62 . . . . . 6  |-  ( ph  ->  0  <_  ( B `  L ) )
53 fmul01.3 . . . . . . . 8  |-  A  =  seq L (  x.  ,  B )
5453fveq1i 5889 . . . . . . 7  |-  ( A `
 L )  =  (  seq L (  x.  ,  B ) `
 L )
55 seq1 12258 . . . . . . . 8  |-  ( L  e.  ZZ  ->  (  seq L (  x.  ,  B ) `  L
)  =  ( B `
 L ) )
5622, 55syl 17 . . . . . . 7  |-  ( ph  ->  (  seq L (  x.  ,  B ) `
 L )  =  ( B `  L
) )
5754, 56syl5eq 2508 . . . . . 6  |-  ( ph  ->  ( A `  L
)  =  ( B `
 L ) )
5852, 57breqtrrd 4443 . . . . 5  |-  ( ph  ->  0  <_  ( A `  L ) )
59 nfcv 2603 . . . . . . . . . 10  |-  F/_ i
1
6042, 39, 59nfbr 4461 . . . . . . . . 9  |-  F/ i ( B `  L
)  <_  1
6137, 60nfim 2014 . . . . . . . 8  |-  F/ i ( ( ph  /\  L  e.  ( L ... M ) )  -> 
( B `  L
)  <_  1 )
6247breq1d 4426 . . . . . . . . 9  |-  ( i  =  L  ->  (
( B `  i
)  <_  1  <->  ( B `  L )  <_  1
) )
6346, 62imbi12d 326 . . . . . . . 8  |-  ( i  =  L  ->  (
( ( ph  /\  i  e.  ( L ... M ) )  -> 
( B `  i
)  <_  1 )  <-> 
( ( ph  /\  L  e.  ( L ... M ) )  -> 
( B `  L
)  <_  1 ) ) )
64 fmul01.9 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( L ... M ) )  ->  ( B `  i )  <_  1
)
6561, 63, 64vtoclg1f 3118 . . . . . . 7  |-  ( L  e.  ( L ... M )  ->  (
( ph  /\  L  e.  ( L ... M
) )  ->  ( B `  L )  <_  1 ) )
6633, 34, 65sylc 62 . . . . . 6  |-  ( ph  ->  ( B `  L
)  <_  1 )
6757, 66eqbrtrd 4437 . . . . 5  |-  ( ph  ->  ( A `  L
)  <_  1 )
6858, 67jca 539 . . . 4  |-  ( ph  ->  ( 0  <_  ( A `  L )  /\  ( A `  L
)  <_  1 ) )
6968a1i 11 . . 3  |-  ( M  e.  ( ZZ>= `  L
)  ->  ( ph  ->  ( 0  <_  ( A `  L )  /\  ( A `  L
)  <_  1 ) ) )
70 elfzouz 11955 . . . . . . . . . 10  |-  ( j  e.  ( L..^ M
)  ->  j  e.  ( ZZ>= `  L )
)
71703ad2ant1 1035 . . . . . . . . 9  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  j  e.  (
ZZ>= `  L ) )
72 simpl3 1019 . . . . . . . . . 10  |-  ( ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_  ( A `  j )  /\  ( A `  j )  <_  1 ) )  /\  ph )  /\  k  e.  ( L ... j
) )  ->  ph )
73 elfzouz2 11965 . . . . . . . . . . . . 13  |-  ( j  e.  ( L..^ M
)  ->  M  e.  ( ZZ>= `  j )
)
74 fzss2 11867 . . . . . . . . . . . . 13  |-  ( M  e.  ( ZZ>= `  j
)  ->  ( L ... j )  C_  ( L ... M ) )
7573, 74syl 17 . . . . . . . . . . . 12  |-  ( j  e.  ( L..^ M
)  ->  ( L ... j )  C_  ( L ... M ) )
76753ad2ant1 1035 . . . . . . . . . . 11  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  ( L ... j )  C_  ( L ... M ) )
7776sselda 3444 . . . . . . . . . 10  |-  ( ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_  ( A `  j )  /\  ( A `  j )  <_  1 ) )  /\  ph )  /\  k  e.  ( L ... j
) )  ->  k  e.  ( L ... M
) )
78 nfv 1772 . . . . . . . . . . . . 13  |-  F/ i  k  e.  ( L ... M )
7935, 78nfan 2022 . . . . . . . . . . . 12  |-  F/ i ( ph  /\  k  e.  ( L ... M
) )
80 nfcv 2603 . . . . . . . . . . . . . 14  |-  F/_ i
k
8140, 80nffv 5895 . . . . . . . . . . . . 13  |-  F/_ i
( B `  k
)
8281nfel1 2617 . . . . . . . . . . . 12  |-  F/ i ( B `  k
)  e.  RR
8379, 82nfim 2014 . . . . . . . . . . 11  |-  F/ i ( ( ph  /\  k  e.  ( L ... M ) )  -> 
( B `  k
)  e.  RR )
84 eleq1 2528 . . . . . . . . . . . . 13  |-  ( i  =  k  ->  (
i  e.  ( L ... M )  <->  k  e.  ( L ... M ) ) )
8584anbi2d 715 . . . . . . . . . . . 12  |-  ( i  =  k  ->  (
( ph  /\  i  e.  ( L ... M
) )  <->  ( ph  /\  k  e.  ( L ... M ) ) ) )
86 fveq2 5888 . . . . . . . . . . . . 13  |-  ( i  =  k  ->  ( B `  i )  =  ( B `  k ) )
8786eleq1d 2524 . . . . . . . . . . . 12  |-  ( i  =  k  ->  (
( B `  i
)  e.  RR  <->  ( B `  k )  e.  RR ) )
8885, 87imbi12d 326 . . . . . . . . . . 11  |-  ( i  =  k  ->  (
( ( ph  /\  i  e.  ( L ... M ) )  -> 
( B `  i
)  e.  RR )  <-> 
( ( ph  /\  k  e.  ( L ... M ) )  -> 
( B `  k
)  e.  RR ) ) )
89 fmul01.7 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  ( L ... M ) )  ->  ( B `  i )  e.  RR )
9083, 88, 89chvar 2117 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( L ... M ) )  ->  ( B `  k )  e.  RR )
9172, 77, 90syl2anc 671 . . . . . . . . 9  |-  ( ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_  ( A `  j )  /\  ( A `  j )  <_  1 ) )  /\  ph )  /\  k  e.  ( L ... j
) )  ->  ( B `  k )  e.  RR )
92 remulcl 9650 . . . . . . . . . 10  |-  ( ( k  e.  RR  /\  l  e.  RR )  ->  ( k  x.  l
)  e.  RR )
9392adantl 472 . . . . . . . . 9  |-  ( ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_  ( A `  j )  /\  ( A `  j )  <_  1 ) )  /\  ph )  /\  ( k  e.  RR  /\  l  e.  RR ) )  -> 
( k  x.  l
)  e.  RR )
9471, 91, 93seqcl 12265 . . . . . . . 8  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  (  seq L
(  x.  ,  B
) `  j )  e.  RR )
95 simp3 1016 . . . . . . . . 9  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  ph )
96 fzofzp1 12039 . . . . . . . . . 10  |-  ( j  e.  ( L..^ M
)  ->  ( j  +  1 )  e.  ( L ... M
) )
97963ad2ant1 1035 . . . . . . . . 9  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  ( j  +  1 )  e.  ( L ... M ) )
98 nfv 1772 . . . . . . . . . . . . 13  |-  F/ i ( j  +  1 )  e.  ( L ... M )
9935, 98nfan 2022 . . . . . . . . . . . 12  |-  F/ i ( ph  /\  (
j  +  1 )  e.  ( L ... M ) )
100 nfcv 2603 . . . . . . . . . . . . . 14  |-  F/_ i
( j  +  1 )
10140, 100nffv 5895 . . . . . . . . . . . . 13  |-  F/_ i
( B `  (
j  +  1 ) )
102101nfel1 2617 . . . . . . . . . . . 12  |-  F/ i ( B `  (
j  +  1 ) )  e.  RR
10399, 102nfim 2014 . . . . . . . . . . 11  |-  F/ i ( ( ph  /\  ( j  +  1 )  e.  ( L ... M ) )  ->  ( B `  ( j  +  1 ) )  e.  RR )
104 eleq1 2528 . . . . . . . . . . . . 13  |-  ( i  =  ( j  +  1 )  ->  (
i  e.  ( L ... M )  <->  ( j  +  1 )  e.  ( L ... M
) ) )
105104anbi2d 715 . . . . . . . . . . . 12  |-  ( i  =  ( j  +  1 )  ->  (
( ph  /\  i  e.  ( L ... M
) )  <->  ( ph  /\  ( j  +  1 )  e.  ( L ... M ) ) ) )
106 fveq2 5888 . . . . . . . . . . . . 13  |-  ( i  =  ( j  +  1 )  ->  ( B `  i )  =  ( B `  ( j  +  1 ) ) )
107106eleq1d 2524 . . . . . . . . . . . 12  |-  ( i  =  ( j  +  1 )  ->  (
( B `  i
)  e.  RR  <->  ( B `  ( j  +  1 ) )  e.  RR ) )
108105, 107imbi12d 326 . . . . . . . . . . 11  |-  ( i  =  ( j  +  1 )  ->  (
( ( ph  /\  i  e.  ( L ... M ) )  -> 
( B `  i
)  e.  RR )  <-> 
( ( ph  /\  ( j  +  1 )  e.  ( L ... M ) )  ->  ( B `  ( j  +  1 ) )  e.  RR ) ) )
109103, 108, 89vtoclg1f 3118 . . . . . . . . . 10  |-  ( ( j  +  1 )  e.  ( L ... M )  ->  (
( ph  /\  (
j  +  1 )  e.  ( L ... M ) )  -> 
( B `  (
j  +  1 ) )  e.  RR ) )
110109anabsi7 833 . . . . . . . . 9  |-  ( (
ph  /\  ( j  +  1 )  e.  ( L ... M
) )  ->  ( B `  ( j  +  1 ) )  e.  RR )
11195, 97, 110syl2anc 671 . . . . . . . 8  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  ( B `  ( j  +  1 ) )  e.  RR )
112 pm3.35 595 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ph  ->  ( 0  <_  ( A `  j )  /\  ( A `  j
)  <_  1 ) ) )  ->  (
0  <_  ( A `  j )  /\  ( A `  j )  <_  1 ) )
113112ancoms 459 . . . . . . . . . . 11  |-  ( ( ( ph  ->  (
0  <_  ( A `  j )  /\  ( A `  j )  <_  1 ) )  /\  ph )  ->  ( 0  <_  ( A `  j )  /\  ( A `  j )  <_  1 ) )
114 simpl 463 . . . . . . . . . . 11  |-  ( ( 0  <_  ( A `  j )  /\  ( A `  j )  <_  1 )  ->  0  <_  ( A `  j
) )
115113, 114syl 17 . . . . . . . . . 10  |-  ( ( ( ph  ->  (
0  <_  ( A `  j )  /\  ( A `  j )  <_  1 ) )  /\  ph )  ->  0  <_  ( A `  j ) )
1161153adant1 1032 . . . . . . . . 9  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  0  <_  ( A `  j )
)
11753fveq1i 5889 . . . . . . . . 9  |-  ( A `
 j )  =  (  seq L (  x.  ,  B ) `
 j )
118116, 117syl6breq 4456 . . . . . . . 8  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  0  <_  (  seq L (  x.  ,  B ) `  j
) )
119 simp1 1014 . . . . . . . . 9  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  j  e.  ( L..^ M ) )
12096adantl 472 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( L..^ M ) )  ->  ( j  +  1 )  e.  ( L ... M ) )
121 simpl 463 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( L..^ M ) )  ->  ph )
122121, 120jca 539 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( L..^ M ) )  ->  ( ph  /\  ( j  +  1 )  e.  ( L ... M ) ) )
12338, 39, 101nfbr 4461 . . . . . . . . . . . 12  |-  F/ i 0  <_  ( B `  ( j  +  1 ) )
12499, 123nfim 2014 . . . . . . . . . . 11  |-  F/ i ( ( ph  /\  ( j  +  1 )  e.  ( L ... M ) )  ->  0  <_  ( B `  ( j  +  1 ) ) )
125106breq2d 4428 . . . . . . . . . . . 12  |-  ( i  =  ( j  +  1 )  ->  (
0  <_  ( B `  i )  <->  0  <_  ( B `  ( j  +  1 ) ) ) )
126105, 125imbi12d 326 . . . . . . . . . . 11  |-  ( i  =  ( j  +  1 )  ->  (
( ( ph  /\  i  e.  ( L ... M ) )  -> 
0  <_  ( B `  i ) )  <->  ( ( ph  /\  ( j  +  1 )  e.  ( L ... M ) )  ->  0  <_  ( B `  ( j  +  1 ) ) ) ) )
127124, 126, 50vtoclg1f 3118 . . . . . . . . . 10  |-  ( ( j  +  1 )  e.  ( L ... M )  ->  (
( ph  /\  (
j  +  1 )  e.  ( L ... M ) )  -> 
0  <_  ( B `  ( j  +  1 ) ) ) )
128120, 122, 127sylc 62 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( L..^ M ) )  ->  0  <_  ( B `  ( j  +  1 ) ) )
12995, 119, 128syl2anc 671 . . . . . . . 8  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  0  <_  ( B `  ( j  +  1 ) ) )
13094, 111, 118, 129mulge0d 10218 . . . . . . 7  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  0  <_  (
(  seq L (  x.  ,  B ) `  j )  x.  ( B `  ( j  +  1 ) ) ) )
131 seqp1 12260 . . . . . . . 8  |-  ( j  e.  ( ZZ>= `  L
)  ->  (  seq L (  x.  ,  B ) `  (
j  +  1 ) )  =  ( (  seq L (  x.  ,  B ) `  j )  x.  ( B `  ( j  +  1 ) ) ) )
13271, 131syl 17 . . . . . . 7  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  (  seq L
(  x.  ,  B
) `  ( j  +  1 ) )  =  ( (  seq L (  x.  ,  B ) `  j
)  x.  ( B `
 ( j  +  1 ) ) ) )
133130, 132breqtrrd 4443 . . . . . 6  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  0  <_  (  seq L (  x.  ,  B ) `  (
j  +  1 ) ) )
13453fveq1i 5889 . . . . . 6  |-  ( A `
 ( j  +  1 ) )  =  (  seq L (  x.  ,  B ) `
 ( j  +  1 ) )
135133, 134syl6breqr 4457 . . . . 5  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  0  <_  ( A `  ( j  +  1 ) ) )
13694, 111remulcld 9697 . . . . . . . 8  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  ( (  seq L (  x.  ,  B ) `  j
)  x.  ( B `
 ( j  +  1 ) ) )  e.  RR )
137 1red 9684 . . . . . . . 8  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  1  e.  RR )
13895, 97jca 539 . . . . . . . . . . 11  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  ( ph  /\  ( j  +  1 )  e.  ( L ... M ) ) )
139101, 39, 59nfbr 4461 . . . . . . . . . . . . 13  |-  F/ i ( B `  (
j  +  1 ) )  <_  1
14099, 139nfim 2014 . . . . . . . . . . . 12  |-  F/ i ( ( ph  /\  ( j  +  1 )  e.  ( L ... M ) )  ->  ( B `  ( j  +  1 ) )  <_  1
)
141106breq1d 4426 . . . . . . . . . . . . 13  |-  ( i  =  ( j  +  1 )  ->  (
( B `  i
)  <_  1  <->  ( B `  ( j  +  1 ) )  <_  1
) )
142105, 141imbi12d 326 . . . . . . . . . . . 12  |-  ( i  =  ( j  +  1 )  ->  (
( ( ph  /\  i  e.  ( L ... M ) )  -> 
( B `  i
)  <_  1 )  <-> 
( ( ph  /\  ( j  +  1 )  e.  ( L ... M ) )  ->  ( B `  ( j  +  1 ) )  <_  1
) ) )
143140, 142, 64vtoclg1f 3118 . . . . . . . . . . 11  |-  ( ( j  +  1 )  e.  ( L ... M )  ->  (
( ph  /\  (
j  +  1 )  e.  ( L ... M ) )  -> 
( B `  (
j  +  1 ) )  <_  1 ) )
14497, 138, 143sylc 62 . . . . . . . . . 10  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  ( B `  ( j  +  1 ) )  <_  1
)
145111, 137, 94, 118, 144lemul2ad 10575 . . . . . . . . 9  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  ( (  seq L (  x.  ,  B ) `  j
)  x.  ( B `
 ( j  +  1 ) ) )  <_  ( (  seq L (  x.  ,  B ) `  j
)  x.  1 ) )
14694recnd 9695 . . . . . . . . . 10  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  (  seq L
(  x.  ,  B
) `  j )  e.  CC )
147146mulid1d 9686 . . . . . . . . 9  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  ( (  seq L (  x.  ,  B ) `  j
)  x.  1 )  =  (  seq L
(  x.  ,  B
) `  j )
)
148145, 147breqtrd 4441 . . . . . . . 8  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  ( (  seq L (  x.  ,  B ) `  j
)  x.  ( B `
 ( j  +  1 ) ) )  <_  (  seq L
(  x.  ,  B
) `  j )
)
149 simp2 1015 . . . . . . . . . 10  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  ( ph  ->  ( 0  <_  ( A `  j )  /\  ( A `  j )  <_  1 ) ) )
150112simprd 469 . . . . . . . . . 10  |-  ( (
ph  /\  ( ph  ->  ( 0  <_  ( A `  j )  /\  ( A `  j
)  <_  1 ) ) )  ->  ( A `  j )  <_  1 )
15195, 149, 150syl2anc 671 . . . . . . . . 9  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  ( A `  j )  <_  1
)
152117, 151syl5eqbrr 4451 . . . . . . . 8  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  (  seq L
(  x.  ,  B
) `  j )  <_  1 )
153136, 94, 137, 148, 152letrd 9818 . . . . . . 7  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  ( (  seq L (  x.  ,  B ) `  j
)  x.  ( B `
 ( j  +  1 ) ) )  <_  1 )
154132, 153eqbrtrd 4437 . . . . . 6  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  (  seq L
(  x.  ,  B
) `  ( j  +  1 ) )  <_  1 )
155134, 154syl5eqbr 4450 . . . . 5  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  ( A `  ( j  +  1 ) )  <_  1
)
156135, 155jca 539 . . . 4  |-  ( ( j  e.  ( L..^ M )  /\  ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  /\  ph )  ->  ( 0  <_ 
( A `  (
j  +  1 ) )  /\  ( A `
 ( j  +  1 ) )  <_ 
1 ) )
1571563exp 1214 . . 3  |-  ( j  e.  ( L..^ M
)  ->  ( ( ph  ->  ( 0  <_ 
( A `  j
)  /\  ( A `  j )  <_  1
) )  ->  ( ph  ->  ( 0  <_ 
( A `  (
j  +  1 ) )  /\  ( A `
 ( j  +  1 ) )  <_ 
1 ) ) ) )
1586, 11, 16, 21, 69, 157fzind2 12054 . 2  |-  ( K  e.  ( L ... M )  ->  ( ph  ->  ( 0  <_ 
( A `  K
)  /\  ( A `  K )  <_  1
) ) )
1591, 158mpcom 37 1  |-  ( ph  ->  ( 0  <_  ( A `  K )  /\  ( A `  K
)  <_  1 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 375    /\ w3a 991    = wceq 1455   F/wnf 1678    e. wcel 1898   F/_wnfc 2590    C_ wss 3416   class class class wbr 4416   ` cfv 5601  (class class class)co 6315   RRcr 9564   0cc0 9565   1c1 9566    + caddc 9568    x. cmul 9570    <_ cle 9702   ZZcz 10966   ZZ>=cuz 11188   ...cfz 11813  ..^cfzo 11946    seqcseq 12245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-sep 4539  ax-nul 4548  ax-pow 4595  ax-pr 4653  ax-un 6610  ax-cnex 9621  ax-resscn 9622  ax-1cn 9623  ax-icn 9624  ax-addcl 9625  ax-addrcl 9626  ax-mulcl 9627  ax-mulrcl 9628  ax-mulcom 9629  ax-addass 9630  ax-mulass 9631  ax-distr 9632  ax-i2m1 9633  ax-1ne0 9634  ax-1rid 9635  ax-rnegex 9636  ax-rrecex 9637  ax-cnre 9638  ax-pre-lttri 9639  ax-pre-lttrn 9640  ax-pre-ltadd 9641  ax-pre-mulgt0 9642
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-nel 2636  df-ral 2754  df-rex 2755  df-reu 2756  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4213  df-iun 4294  df-br 4417  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6277  df-ov 6318  df-oprab 6319  df-mpt2 6320  df-om 6720  df-1st 6820  df-2nd 6821  df-wrecs 7054  df-recs 7116  df-rdg 7154  df-er 7389  df-en 7596  df-dom 7597  df-sdom 7598  df-pnf 9703  df-mnf 9704  df-xr 9705  df-ltxr 9706  df-le 9707  df-sub 9888  df-neg 9889  df-nn 10638  df-n0 10899  df-z 10967  df-uz 11189  df-fz 11814  df-fzo 11947  df-seq 12246
This theorem is referenced by:  fmul01lt1lem1  37700  fmul01lt1lem2  37701
  Copyright terms: Public domain W3C validator