MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmucnd Structured version   Unicode version

Theorem fmucnd 19998
Description: The image of a Cauchy filter base by an uniformly continuous function is a Cauchy filter base. Deduction form. Proposition 3 of [BourbakiTop1] p. II.13. (Contributed by Thierry Arnoux, 18-Nov-2017.)
Hypotheses
Ref Expression
fmucnd.1  |-  ( ph  ->  U  e.  (UnifOn `  X ) )
fmucnd.2  |-  ( ph  ->  V  e.  (UnifOn `  Y ) )
fmucnd.3  |-  ( ph  ->  F  e.  ( U Cnu V ) )
fmucnd.4  |-  ( ph  ->  C  e.  (CauFilu `  U
) )
fmucnd.5  |-  D  =  ran  ( a  e.  C  |->  ( F "
a ) )
Assertion
Ref Expression
fmucnd  |-  ( ph  ->  D  e.  (CauFilu `  V
) )
Distinct variable groups:    C, a    D, a    F, a    V, a    X, a    Y, a    ph, a
Allowed substitution hint:    U( a)

Proof of Theorem fmucnd
Dummy variables  c 
b  v  r  s  t  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmucnd.1 . . . 4  |-  ( ph  ->  U  e.  (UnifOn `  X ) )
2 fmucnd.4 . . . 4  |-  ( ph  ->  C  e.  (CauFilu `  U
) )
3 cfilufbas 19995 . . . 4  |-  ( ( U  e.  (UnifOn `  X )  /\  C  e.  (CauFilu `  U ) )  ->  C  e.  (
fBas `  X )
)
41, 2, 3syl2anc 661 . . 3  |-  ( ph  ->  C  e.  ( fBas `  X ) )
5 fmucnd.2 . . . 4  |-  ( ph  ->  V  e.  (UnifOn `  Y ) )
6 fmucnd.3 . . . 4  |-  ( ph  ->  F  e.  ( U Cnu V ) )
7 isucn 19984 . . . . 5  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  (UnifOn `  Y )
)  ->  ( F  e.  ( U Cnu V )  <->  ( F : X --> Y  /\  A. v  e.  V  E. r  e.  U  A. x  e.  X  A. y  e.  X  (
x r y  -> 
( F `  x
) v ( F `
 y ) ) ) ) )
87simprbda 623 . . . 4  |-  ( ( ( U  e.  (UnifOn `  X )  /\  V  e.  (UnifOn `  Y )
)  /\  F  e.  ( U Cnu V ) )  ->  F : X --> Y )
91, 5, 6, 8syl21anc 1218 . . 3  |-  ( ph  ->  F : X --> Y )
105elfvexd 5826 . . 3  |-  ( ph  ->  Y  e.  _V )
11 fmucnd.5 . . . 4  |-  D  =  ran  ( a  e.  C  |->  ( F "
a ) )
1211fbasrn 19588 . . 3  |-  ( ( C  e.  ( fBas `  X )  /\  F : X --> Y  /\  Y  e.  _V )  ->  D  e.  ( fBas `  Y
) )
134, 9, 10, 12syl3anc 1219 . 2  |-  ( ph  ->  D  e.  ( fBas `  Y ) )
14 simplr 754 . . . . . . . 8  |-  ( ( ( ( ph  /\  v  e.  V )  /\  a  e.  C
)  /\  ( a  X.  a )  C_  ( `' ( x  e.  X ,  y  e.  X  |->  <. ( F `  x ) ,  ( F `  y )
>. ) " v ) )  ->  a  e.  C )
15 eqid 2454 . . . . . . . 8  |-  ( F
" a )  =  ( F " a
)
16 imaeq2 5272 . . . . . . . . . 10  |-  ( c  =  a  ->  ( F " c )  =  ( F " a
) )
1716eqeq2d 2468 . . . . . . . . 9  |-  ( c  =  a  ->  (
( F " a
)  =  ( F
" c )  <->  ( F " a )  =  ( F " a ) ) )
1817rspcev 3177 . . . . . . . 8  |-  ( ( a  e.  C  /\  ( F " a )  =  ( F "
a ) )  ->  E. c  e.  C  ( F " a )  =  ( F "
c ) )
1914, 15, 18sylancl 662 . . . . . . 7  |-  ( ( ( ( ph  /\  v  e.  V )  /\  a  e.  C
)  /\  ( a  X.  a )  C_  ( `' ( x  e.  X ,  y  e.  X  |->  <. ( F `  x ) ,  ( F `  y )
>. ) " v ) )  ->  E. c  e.  C  ( F " a )  =  ( F " c ) )
20 imaexg 6624 . . . . . . . . 9  |-  ( F  e.  ( U Cnu V )  ->  ( F "
a )  e.  _V )
21 eqid 2454 . . . . . . . . . 10  |-  ( c  e.  C  |->  ( F
" c ) )  =  ( c  e.  C  |->  ( F "
c ) )
2221elrnmpt 5193 . . . . . . . . 9  |-  ( ( F " a )  e.  _V  ->  (
( F " a
)  e.  ran  (
c  e.  C  |->  ( F " c ) )  <->  E. c  e.  C  ( F " a )  =  ( F "
c ) ) )
236, 20, 223syl 20 . . . . . . . 8  |-  ( ph  ->  ( ( F "
a )  e.  ran  ( c  e.  C  |->  ( F " c
) )  <->  E. c  e.  C  ( F " a )  =  ( F " c ) ) )
2423ad3antrrr 729 . . . . . . 7  |-  ( ( ( ( ph  /\  v  e.  V )  /\  a  e.  C
)  /\  ( a  X.  a )  C_  ( `' ( x  e.  X ,  y  e.  X  |->  <. ( F `  x ) ,  ( F `  y )
>. ) " v ) )  ->  ( ( F " a )  e. 
ran  ( c  e.  C  |->  ( F "
c ) )  <->  E. c  e.  C  ( F " a )  =  ( F " c ) ) )
2519, 24mpbird 232 . . . . . 6  |-  ( ( ( ( ph  /\  v  e.  V )  /\  a  e.  C
)  /\  ( a  X.  a )  C_  ( `' ( x  e.  X ,  y  e.  X  |->  <. ( F `  x ) ,  ( F `  y )
>. ) " v ) )  ->  ( F " a )  e.  ran  ( c  e.  C  |->  ( F " c
) ) )
26 imaeq2 5272 . . . . . . . . 9  |-  ( a  =  c  ->  ( F " a )  =  ( F " c
) )
2726cbvmptv 4490 . . . . . . . 8  |-  ( a  e.  C  |->  ( F
" a ) )  =  ( c  e.  C  |->  ( F "
c ) )
2827rneqi 5173 . . . . . . 7  |-  ran  (
a  e.  C  |->  ( F " a ) )  =  ran  (
c  e.  C  |->  ( F " c ) )
2911, 28eqtri 2483 . . . . . 6  |-  D  =  ran  ( c  e.  C  |->  ( F "
c ) )
3025, 29syl6eleqr 2553 . . . . 5  |-  ( ( ( ( ph  /\  v  e.  V )  /\  a  e.  C
)  /\  ( a  X.  a )  C_  ( `' ( x  e.  X ,  y  e.  X  |->  <. ( F `  x ) ,  ( F `  y )
>. ) " v ) )  ->  ( F " a )  e.  D
)
31 ffn 5666 . . . . . . . . 9  |-  ( F : X --> Y  ->  F  Fn  X )
329, 31syl 16 . . . . . . . 8  |-  ( ph  ->  F  Fn  X )
3332ad3antrrr 729 . . . . . . 7  |-  ( ( ( ( ph  /\  v  e.  V )  /\  a  e.  C
)  /\  ( a  X.  a )  C_  ( `' ( x  e.  X ,  y  e.  X  |->  <. ( F `  x ) ,  ( F `  y )
>. ) " v ) )  ->  F  Fn  X )
34 simplll 757 . . . . . . . 8  |-  ( ( ( ( ph  /\  v  e.  V )  /\  a  e.  C
)  /\  ( a  X.  a )  C_  ( `' ( x  e.  X ,  y  e.  X  |->  <. ( F `  x ) ,  ( F `  y )
>. ) " v ) )  ->  ph )
35 fbelss 19537 . . . . . . . . 9  |-  ( ( C  e.  ( fBas `  X )  /\  a  e.  C )  ->  a  C_  X )
364, 35sylan 471 . . . . . . . 8  |-  ( (
ph  /\  a  e.  C )  ->  a  C_  X )
3734, 14, 36syl2anc 661 . . . . . . 7  |-  ( ( ( ( ph  /\  v  e.  V )  /\  a  e.  C
)  /\  ( a  X.  a )  C_  ( `' ( x  e.  X ,  y  e.  X  |->  <. ( F `  x ) ,  ( F `  y )
>. ) " v ) )  ->  a  C_  X )
38 fmucndlem 19997 . . . . . . 7  |-  ( ( F  Fn  X  /\  a  C_  X )  -> 
( ( x  e.  X ,  y  e.  X  |->  <. ( F `  x ) ,  ( F `  y )
>. ) " ( a  X.  a ) )  =  ( ( F
" a )  X.  ( F " a
) ) )
3933, 37, 38syl2anc 661 . . . . . 6  |-  ( ( ( ( ph  /\  v  e.  V )  /\  a  e.  C
)  /\  ( a  X.  a )  C_  ( `' ( x  e.  X ,  y  e.  X  |->  <. ( F `  x ) ,  ( F `  y )
>. ) " v ) )  ->  ( (
x  e.  X , 
y  e.  X  |->  <.
( F `  x
) ,  ( F `
 y ) >.
) " ( a  X.  a ) )  =  ( ( F
" a )  X.  ( F " a
) ) )
40 eqid 2454 . . . . . . . . 9  |-  ( x  e.  X ,  y  e.  X  |->  <. ( F `  x ) ,  ( F `  y ) >. )  =  ( x  e.  X ,  y  e.  X  |->  <. ( F `  x ) ,  ( F `  y )
>. )
4140mpt2fun 6301 . . . . . . . 8  |-  Fun  (
x  e.  X , 
y  e.  X  |->  <.
( F `  x
) ,  ( F `
 y ) >.
)
42 funimass2 5599 . . . . . . . 8  |-  ( ( Fun  ( x  e.  X ,  y  e.  X  |->  <. ( F `  x ) ,  ( F `  y )
>. )  /\  (
a  X.  a ) 
C_  ( `' ( x  e.  X , 
y  e.  X  |->  <.
( F `  x
) ,  ( F `
 y ) >.
) " v ) )  ->  ( (
x  e.  X , 
y  e.  X  |->  <.
( F `  x
) ,  ( F `
 y ) >.
) " ( a  X.  a ) ) 
C_  v )
4341, 42mpan 670 . . . . . . 7  |-  ( ( a  X.  a ) 
C_  ( `' ( x  e.  X , 
y  e.  X  |->  <.
( F `  x
) ,  ( F `
 y ) >.
) " v )  ->  ( ( x  e.  X ,  y  e.  X  |->  <. ( F `  x ) ,  ( F `  y ) >. ) " ( a  X.  a ) )  C_  v )
4443adantl 466 . . . . . 6  |-  ( ( ( ( ph  /\  v  e.  V )  /\  a  e.  C
)  /\  ( a  X.  a )  C_  ( `' ( x  e.  X ,  y  e.  X  |->  <. ( F `  x ) ,  ( F `  y )
>. ) " v ) )  ->  ( (
x  e.  X , 
y  e.  X  |->  <.
( F `  x
) ,  ( F `
 y ) >.
) " ( a  X.  a ) ) 
C_  v )
4539, 44eqsstr3d 3498 . . . . 5  |-  ( ( ( ( ph  /\  v  e.  V )  /\  a  e.  C
)  /\  ( a  X.  a )  C_  ( `' ( x  e.  X ,  y  e.  X  |->  <. ( F `  x ) ,  ( F `  y )
>. ) " v ) )  ->  ( ( F " a )  X.  ( F " a
) )  C_  v
)
46 id 22 . . . . . . . 8  |-  ( b  =  ( F "
a )  ->  b  =  ( F "
a ) )
4746, 46xpeq12d 4972 . . . . . . 7  |-  ( b  =  ( F "
a )  ->  (
b  X.  b )  =  ( ( F
" a )  X.  ( F " a
) ) )
4847sseq1d 3490 . . . . . 6  |-  ( b  =  ( F "
a )  ->  (
( b  X.  b
)  C_  v  <->  ( ( F " a )  X.  ( F " a
) )  C_  v
) )
4948rspcev 3177 . . . . 5  |-  ( ( ( F " a
)  e.  D  /\  ( ( F "
a )  X.  ( F " a ) ) 
C_  v )  ->  E. b  e.  D  ( b  X.  b
)  C_  v )
5030, 45, 49syl2anc 661 . . . 4  |-  ( ( ( ( ph  /\  v  e.  V )  /\  a  e.  C
)  /\  ( a  X.  a )  C_  ( `' ( x  e.  X ,  y  e.  X  |->  <. ( F `  x ) ,  ( F `  y )
>. ) " v ) )  ->  E. b  e.  D  ( b  X.  b )  C_  v
)
511adantr 465 . . . . 5  |-  ( (
ph  /\  v  e.  V )  ->  U  e.  (UnifOn `  X )
)
522adantr 465 . . . . 5  |-  ( (
ph  /\  v  e.  V )  ->  C  e.  (CauFilu `  U ) )
535adantr 465 . . . . . 6  |-  ( (
ph  /\  v  e.  V )  ->  V  e.  (UnifOn `  Y )
)
546adantr 465 . . . . . 6  |-  ( (
ph  /\  v  e.  V )  ->  F  e.  ( U Cnu V ) )
55 simpr 461 . . . . . 6  |-  ( (
ph  /\  v  e.  V )  ->  v  e.  V )
56 nfcv 2616 . . . . . . 7  |-  F/_ s <. ( F `  x
) ,  ( F `
 y ) >.
57 nfcv 2616 . . . . . . 7  |-  F/_ t <. ( F `  x
) ,  ( F `
 y ) >.
58 nfcv 2616 . . . . . . 7  |-  F/_ x <. ( F `  s
) ,  ( F `
 t ) >.
59 nfcv 2616 . . . . . . 7  |-  F/_ y <. ( F `  s
) ,  ( F `
 t ) >.
60 simpl 457 . . . . . . . . 9  |-  ( ( x  =  s  /\  y  =  t )  ->  x  =  s )
6160fveq2d 5802 . . . . . . . 8  |-  ( ( x  =  s  /\  y  =  t )  ->  ( F `  x
)  =  ( F `
 s ) )
62 simpr 461 . . . . . . . . 9  |-  ( ( x  =  s  /\  y  =  t )  ->  y  =  t )
6362fveq2d 5802 . . . . . . . 8  |-  ( ( x  =  s  /\  y  =  t )  ->  ( F `  y
)  =  ( F `
 t ) )
6461, 63opeq12d 4174 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  t )  -> 
<. ( F `  x
) ,  ( F `
 y ) >.  =  <. ( F `  s ) ,  ( F `  t )
>. )
6556, 57, 58, 59, 64cbvmpt2 6273 . . . . . 6  |-  ( x  e.  X ,  y  e.  X  |->  <. ( F `  x ) ,  ( F `  y ) >. )  =  ( s  e.  X ,  t  e.  X  |->  <. ( F `  s ) ,  ( F `  t )
>. )
6651, 53, 54, 55, 65ucnprima 19988 . . . . 5  |-  ( (
ph  /\  v  e.  V )  ->  ( `' ( x  e.  X ,  y  e.  X  |->  <. ( F `  x ) ,  ( F `  y )
>. ) " v )  e.  U )
67 cfiluexsm 19996 . . . . 5  |-  ( ( U  e.  (UnifOn `  X )  /\  C  e.  (CauFilu `  U )  /\  ( `' ( x  e.  X ,  y  e.  X  |->  <. ( F `  x ) ,  ( F `  y )
>. ) " v )  e.  U )  ->  E. a  e.  C  ( a  X.  a
)  C_  ( `' ( x  e.  X ,  y  e.  X  |-> 
<. ( F `  x
) ,  ( F `
 y ) >.
) " v ) )
6851, 52, 66, 67syl3anc 1219 . . . 4  |-  ( (
ph  /\  v  e.  V )  ->  E. a  e.  C  ( a  X.  a )  C_  ( `' ( x  e.  X ,  y  e.  X  |->  <. ( F `  x ) ,  ( F `  y )
>. ) " v ) )
6950, 68r19.29a 2966 . . 3  |-  ( (
ph  /\  v  e.  V )  ->  E. b  e.  D  ( b  X.  b )  C_  v
)
7069ralrimiva 2829 . 2  |-  ( ph  ->  A. v  e.  V  E. b  e.  D  ( b  X.  b
)  C_  v )
71 iscfilu 19994 . . 3  |-  ( V  e.  (UnifOn `  Y
)  ->  ( D  e.  (CauFilu `  V )  <->  ( D  e.  ( fBas `  Y
)  /\  A. v  e.  V  E. b  e.  D  ( b  X.  b )  C_  v
) ) )
725, 71syl 16 . 2  |-  ( ph  ->  ( D  e.  (CauFilu `  V )  <->  ( D  e.  ( fBas `  Y
)  /\  A. v  e.  V  E. b  e.  D  ( b  X.  b )  C_  v
) ) )
7313, 70, 72mpbir2and 913 1  |-  ( ph  ->  D  e.  (CauFilu `  V
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2798   E.wrex 2799   _Vcvv 3076    C_ wss 3435   <.cop 3990   class class class wbr 4399    |-> cmpt 4457    X. cxp 4945   `'ccnv 4946   ran crn 4948   "cima 4950   Fun wfun 5519    Fn wfn 5520   -->wf 5521   ` cfv 5525  (class class class)co 6199    |-> cmpt2 6201   fBascfbas 17928  UnifOncust 19905   Cnucucn 19981  CauFiluccfilu 19992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4510  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-nel 2650  df-ral 2803  df-rex 2804  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-op 3991  df-uni 4199  df-iun 4280  df-br 4400  df-opab 4458  df-mpt 4459  df-id 4743  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-fv 5533  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-1st 6686  df-2nd 6687  df-map 7325  df-fbas 17938  df-ust 19906  df-ucn 19982  df-cfilu 19993
This theorem is referenced by:  ucnextcn  20010
  Copyright terms: Public domain W3C validator