MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmptpr Structured version   Unicode version

Theorem fmptpr 6013
Description: Express a pair function in maps-to notation. (Contributed by Thierry Arnoux, 3-Jan-2017.)
Hypotheses
Ref Expression
fmptpr.1  |-  ( ph  ->  A  e.  V )
fmptpr.2  |-  ( ph  ->  B  e.  W )
fmptpr.3  |-  ( ph  ->  C  e.  X )
fmptpr.4  |-  ( ph  ->  D  e.  Y )
fmptpr.5  |-  ( (
ph  /\  x  =  A )  ->  E  =  C )
fmptpr.6  |-  ( (
ph  /\  x  =  B )  ->  E  =  D )
Assertion
Ref Expression
fmptpr  |-  ( ph  ->  { <. A ,  C >. ,  <. B ,  D >. }  =  ( x  e.  { A ,  B }  |->  E ) )
Distinct variable groups:    x, A    x, B    x, C    x, D    ph, x
Allowed substitution hints:    E( x)    V( x)    W( x)    X( x)    Y( x)

Proof of Theorem fmptpr
StepHypRef Expression
1 df-pr 3989 . . 3  |-  { <. A ,  C >. ,  <. B ,  D >. }  =  ( { <. A ,  C >. }  u.  { <. B ,  D >. } )
21a1i 11 . 2  |-  ( ph  ->  { <. A ,  C >. ,  <. B ,  D >. }  =  ( {
<. A ,  C >. }  u.  { <. B ,  D >. } ) )
3 mpt0 5647 . . . . . 6  |-  ( x  e.  (/)  |->  E )  =  (/)
43uneq1i 3615 . . . . 5  |-  ( ( x  e.  (/)  |->  E )  u.  { <. A ,  C >. } )  =  ( (/)  u.  { <. A ,  C >. } )
5 uncom 3609 . . . . 5  |-  ( (/)  u. 
{ <. A ,  C >. } )  =  ( { <. A ,  C >. }  u.  (/) )
6 un0 3771 . . . . 5  |-  ( {
<. A ,  C >. }  u.  (/) )  =  { <. A ,  C >. }
74, 5, 63eqtri 2487 . . . 4  |-  ( ( x  e.  (/)  |->  E )  u.  { <. A ,  C >. } )  =  { <. A ,  C >. }
8 fmptpr.1 . . . . . 6  |-  ( ph  ->  A  e.  V )
9 elex 3087 . . . . . 6  |-  ( A  e.  V  ->  A  e.  _V )
108, 9syl 16 . . . . 5  |-  ( ph  ->  A  e.  _V )
11 fmptpr.3 . . . . . 6  |-  ( ph  ->  C  e.  X )
12 elex 3087 . . . . . 6  |-  ( C  e.  X  ->  C  e.  _V )
1311, 12syl 16 . . . . 5  |-  ( ph  ->  C  e.  _V )
14 uncom 3609 . . . . . . 7  |-  ( { A }  u.  (/) )  =  ( (/)  u.  { A } )
15 un0 3771 . . . . . . 7  |-  ( { A }  u.  (/) )  =  { A }
1614, 15eqtr3i 2485 . . . . . 6  |-  ( (/)  u. 
{ A } )  =  { A }
1716a1i 11 . . . . 5  |-  ( ph  ->  ( (/)  u.  { A } )  =  { A } )
18 fmptpr.5 . . . . 5  |-  ( (
ph  /\  x  =  A )  ->  E  =  C )
1910, 13, 17, 18fmptapd 6012 . . . 4  |-  ( ph  ->  ( ( x  e.  (/)  |->  E )  u. 
{ <. A ,  C >. } )  =  ( x  e.  { A }  |->  E ) )
207, 19syl5eqr 2509 . . 3  |-  ( ph  ->  { <. A ,  C >. }  =  ( x  e.  { A }  |->  E ) )
2120uneq1d 3618 . 2  |-  ( ph  ->  ( { <. A ,  C >. }  u.  { <. B ,  D >. } )  =  ( ( x  e.  { A }  |->  E )  u. 
{ <. B ,  D >. } ) )
22 fmptpr.2 . . . 4  |-  ( ph  ->  B  e.  W )
23 elex 3087 . . . 4  |-  ( B  e.  W  ->  B  e.  _V )
2422, 23syl 16 . . 3  |-  ( ph  ->  B  e.  _V )
25 fmptpr.4 . . . 4  |-  ( ph  ->  D  e.  Y )
26 elex 3087 . . . 4  |-  ( D  e.  Y  ->  D  e.  _V )
2725, 26syl 16 . . 3  |-  ( ph  ->  D  e.  _V )
28 df-pr 3989 . . . . 5  |-  { A ,  B }  =  ( { A }  u.  { B } )
2928eqcomi 2467 . . . 4  |-  ( { A }  u.  { B } )  =  { A ,  B }
3029a1i 11 . . 3  |-  ( ph  ->  ( { A }  u.  { B } )  =  { A ,  B } )
31 fmptpr.6 . . 3  |-  ( (
ph  /\  x  =  B )  ->  E  =  D )
3224, 27, 30, 31fmptapd 6012 . 2  |-  ( ph  ->  ( ( x  e. 
{ A }  |->  E )  u.  { <. B ,  D >. } )  =  ( x  e. 
{ A ,  B }  |->  E ) )
332, 21, 323eqtrd 2499 1  |-  ( ph  ->  { <. A ,  C >. ,  <. B ,  D >. }  =  ( x  e.  { A ,  B }  |->  E ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   _Vcvv 3078    u. cun 3435   (/)c0 3746   {csn 3986   {cpr 3988   <.cop 3992    |-> cmpt 4459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pr 4640
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3747  df-if 3901  df-sn 3987  df-pr 3989  df-op 3993  df-br 4402  df-opab 4460  df-mpt 4461  df-id 4745  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534
This theorem is referenced by:  pmtrprfvalrn  16114  esumsn  26661  zlmodzxzscm  30903  zlmodzxzadd  30904
  Copyright terms: Public domain W3C validator