MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmptcos Structured version   Unicode version

Theorem fmptcos 6042
Description: Composition of two functions expressed as mapping abstractions. (Contributed by NM, 22-May-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
fmptcof.1  |-  ( ph  ->  A. x  e.  A  R  e.  B )
fmptcof.2  |-  ( ph  ->  F  =  ( x  e.  A  |->  R ) )
fmptcof.3  |-  ( ph  ->  G  =  ( y  e.  B  |->  S ) )
Assertion
Ref Expression
fmptcos  |-  ( ph  ->  ( G  o.  F
)  =  ( x  e.  A  |->  [_ R  /  y ]_ S
) )
Distinct variable groups:    x, y, B    y, R    x, S    x, A
Allowed substitution hints:    ph( x, y)    A( y)    R( x)    S( y)    F( x, y)    G( x, y)

Proof of Theorem fmptcos
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 fmptcof.1 . 2  |-  ( ph  ->  A. x  e.  A  R  e.  B )
2 fmptcof.2 . 2  |-  ( ph  ->  F  =  ( x  e.  A  |->  R ) )
3 fmptcof.3 . . 3  |-  ( ph  ->  G  =  ( y  e.  B  |->  S ) )
4 nfcv 2616 . . . 4  |-  F/_ z S
5 nfcsb1v 3436 . . . 4  |-  F/_ y [_ z  /  y ]_ S
6 csbeq1a 3429 . . . 4  |-  ( y  =  z  ->  S  =  [_ z  /  y ]_ S )
74, 5, 6cbvmpt 4529 . . 3  |-  ( y  e.  B  |->  S )  =  ( z  e.  B  |->  [_ z  /  y ]_ S )
83, 7syl6eq 2511 . 2  |-  ( ph  ->  G  =  ( z  e.  B  |->  [_ z  /  y ]_ S
) )
9 csbeq1 3423 . 2  |-  ( z  =  R  ->  [_ z  /  y ]_ S  =  [_ R  /  y ]_ S )
101, 2, 8, 9fmptcof 6041 1  |-  ( ph  ->  ( G  o.  F
)  =  ( x  e.  A  |->  [_ R  /  y ]_ S
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1398    e. wcel 1823   A.wral 2804   [_csb 3420    |-> cmpt 4497    o. ccom 4992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-fv 5578
This theorem is referenced by:  fmpt2co  6856  gsummptf1o  17186  gsummpt2d  28006  divcncf  31925
  Copyright terms: Public domain W3C validator