MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmptap Structured version   Unicode version

Theorem fmptap 6030
Description: Append an additional value to a function. (Contributed by NM, 6-Jun-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
fmptap.0a  |-  A  e. 
_V
fmptap.0b  |-  B  e. 
_V
fmptap.1  |-  ( R  u.  { A }
)  =  S
fmptap.2  |-  ( x  =  A  ->  C  =  B )
Assertion
Ref Expression
fmptap  |-  ( ( x  e.  R  |->  C )  u.  { <. A ,  B >. } )  =  ( x  e.  S  |->  C )
Distinct variable groups:    x, A    x, B    x, R    x, S
Allowed substitution hint:    C( x)

Proof of Theorem fmptap
StepHypRef Expression
1 fmptap.0a . . . . 5  |-  A  e. 
_V
2 fmptap.0b . . . . 5  |-  B  e. 
_V
3 fmptsn 6027 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  { <. A ,  B >. }  =  ( x  e.  { A }  |->  B ) )
41, 2, 3mp2an 670 . . . 4  |-  { <. A ,  B >. }  =  ( x  e.  { A }  |->  B )
5 elsni 3996 . . . . . 6  |-  ( x  e.  { A }  ->  x  =  A )
6 fmptap.2 . . . . . 6  |-  ( x  =  A  ->  C  =  B )
75, 6syl 17 . . . . 5  |-  ( x  e.  { A }  ->  C  =  B )
87mpteq2ia 4476 . . . 4  |-  ( x  e.  { A }  |->  C )  =  ( x  e.  { A }  |->  B )
94, 8eqtr4i 2434 . . 3  |-  { <. A ,  B >. }  =  ( x  e.  { A }  |->  C )
109uneq2i 3593 . 2  |-  ( ( x  e.  R  |->  C )  u.  { <. A ,  B >. } )  =  ( ( x  e.  R  |->  C )  u.  ( x  e. 
{ A }  |->  C ) )
11 mptun 5651 . 2  |-  ( x  e.  ( R  u.  { A } )  |->  C )  =  ( ( x  e.  R  |->  C )  u.  ( x  e.  { A }  |->  C ) )
12 fmptap.1 . . 3  |-  ( R  u.  { A }
)  =  S
13 mpteq1 4474 . . 3  |-  ( ( R  u.  { A } )  =  S  ->  ( x  e.  ( R  u.  { A } )  |->  C )  =  ( x  e.  S  |->  C ) )
1412, 13ax-mp 5 . 2  |-  ( x  e.  ( R  u.  { A } )  |->  C )  =  ( x  e.  S  |->  C )
1510, 11, 143eqtr2i 2437 1  |-  ( ( x  e.  R  |->  C )  u.  { <. A ,  B >. } )  =  ( x  e.  S  |->  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1405    e. wcel 1842   _Vcvv 3058    u. cun 3411   {csn 3971   <.cop 3977    |-> cmpt 4452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pr 4629
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-reu 2760  df-rab 2762  df-v 3060  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-sn 3972  df-pr 3974  df-op 3978  df-br 4395  df-opab 4453  df-mpt 4454  df-id 4737  df-xp 4948  df-rel 4949  df-cnv 4950  df-co 4951  df-dm 4952  df-rn 4953  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator