MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmfnfmlem4 Structured version   Unicode version

Theorem fmfnfmlem4 20964
Description: Lemma for fmfnfm 20965. (Contributed by Jeff Hankins, 19-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypotheses
Ref Expression
fmfnfm.b  |-  ( ph  ->  B  e.  ( fBas `  Y ) )
fmfnfm.l  |-  ( ph  ->  L  e.  ( Fil `  X ) )
fmfnfm.f  |-  ( ph  ->  F : Y --> X )
fmfnfm.fm  |-  ( ph  ->  ( ( X  FilMap  F ) `  B ) 
C_  L )
Assertion
Ref Expression
fmfnfmlem4  |-  ( ph  ->  ( t  e.  L  <->  ( t  C_  X  /\  E. s  e.  ( fi
`  ( B  u.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) ) ( F "
s )  C_  t
) ) )
Distinct variable groups:    t, s, x, B    F, s, t, x    L, s, t, x    ph, s, t, x    X, s, t, x    Y, s, t, x

Proof of Theorem fmfnfmlem4
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmfnfm.l . . . 4  |-  ( ph  ->  L  e.  ( Fil `  X ) )
2 filelss 20859 . . . . 5  |-  ( ( L  e.  ( Fil `  X )  /\  t  e.  L )  ->  t  C_  X )
32ex 436 . . . 4  |-  ( L  e.  ( Fil `  X
)  ->  ( t  e.  L  ->  t  C_  X ) )
41, 3syl 17 . . 3  |-  ( ph  ->  ( t  e.  L  ->  t  C_  X )
)
5 fmfnfm.b . . . . . . . . 9  |-  ( ph  ->  B  e.  ( fBas `  Y ) )
6 mptexg 6148 . . . . . . . . . . 11  |-  ( L  e.  ( Fil `  X
)  ->  ( x  e.  L  |->  ( `' F " x ) )  e.  _V )
7 rnexg 6737 . . . . . . . . . . 11  |-  ( ( x  e.  L  |->  ( `' F " x ) )  e.  _V  ->  ran  ( x  e.  L  |->  ( `' F "
x ) )  e. 
_V )
86, 7syl 17 . . . . . . . . . 10  |-  ( L  e.  ( Fil `  X
)  ->  ran  ( x  e.  L  |->  ( `' F " x ) )  e.  _V )
91, 8syl 17 . . . . . . . . 9  |-  ( ph  ->  ran  ( x  e.  L  |->  ( `' F " x ) )  e. 
_V )
10 unexg 6604 . . . . . . . . 9  |-  ( ( B  e.  ( fBas `  Y )  /\  ran  ( x  e.  L  |->  ( `' F "
x ) )  e. 
_V )  ->  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) )  e.  _V )
115, 9, 10syl2anc 666 . . . . . . . 8  |-  ( ph  ->  ( B  u.  ran  ( x  e.  L  |->  ( `' F "
x ) ) )  e.  _V )
12 ssfii 7937 . . . . . . . . 9  |-  ( ( B  u.  ran  (
x  e.  L  |->  ( `' F " x ) ) )  e.  _V  ->  ( B  u.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) 
C_  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) ) )
1312unssbd 3645 . . . . . . . 8  |-  ( ( B  u.  ran  (
x  e.  L  |->  ( `' F " x ) ) )  e.  _V  ->  ran  ( x  e.  L  |->  ( `' F " x ) )  C_  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) ) )
1411, 13syl 17 . . . . . . 7  |-  ( ph  ->  ran  ( x  e.  L  |->  ( `' F " x ) )  C_  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) ) )
1514adantr 467 . . . . . 6  |-  ( (
ph  /\  t  e.  L )  ->  ran  ( x  e.  L  |->  ( `' F "
x ) )  C_  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) ) )
16 eqid 2423 . . . . . . . . 9  |-  ( `' F " t )  =  ( `' F " t )
17 imaeq2 5181 . . . . . . . . . . 11  |-  ( x  =  t  ->  ( `' F " x )  =  ( `' F " t ) )
1817eqeq2d 2437 . . . . . . . . . 10  |-  ( x  =  t  ->  (
( `' F "
t )  =  ( `' F " x )  <-> 
( `' F "
t )  =  ( `' F " t ) ) )
1918rspcev 3183 . . . . . . . . 9  |-  ( ( t  e.  L  /\  ( `' F " t )  =  ( `' F " t ) )  ->  E. x  e.  L  ( `' F " t )  =  ( `' F " x ) )
2016, 19mpan2 676 . . . . . . . 8  |-  ( t  e.  L  ->  E. x  e.  L  ( `' F " t )  =  ( `' F "
x ) )
2120adantl 468 . . . . . . 7  |-  ( (
ph  /\  t  e.  L )  ->  E. x  e.  L  ( `' F " t )  =  ( `' F "
x ) )
22 elfvdm 5905 . . . . . . . . . . 11  |-  ( B  e.  ( fBas `  Y
)  ->  Y  e.  dom  fBas )
235, 22syl 17 . . . . . . . . . 10  |-  ( ph  ->  Y  e.  dom  fBas )
24 cnvimass 5205 . . . . . . . . . . 11  |-  ( `' F " t ) 
C_  dom  F
25 fmfnfm.f . . . . . . . . . . . 12  |-  ( ph  ->  F : Y --> X )
26 fdm 5748 . . . . . . . . . . . 12  |-  ( F : Y --> X  ->  dom  F  =  Y )
2725, 26syl 17 . . . . . . . . . . 11  |-  ( ph  ->  dom  F  =  Y )
2824, 27syl5sseq 3513 . . . . . . . . . 10  |-  ( ph  ->  ( `' F "
t )  C_  Y
)
2923, 28ssexd 4569 . . . . . . . . 9  |-  ( ph  ->  ( `' F "
t )  e.  _V )
3029adantr 467 . . . . . . . 8  |-  ( (
ph  /\  t  e.  L )  ->  ( `' F " t )  e.  _V )
31 eqid 2423 . . . . . . . . 9  |-  ( x  e.  L  |->  ( `' F " x ) )  =  ( x  e.  L  |->  ( `' F " x ) )
3231elrnmpt 5098 . . . . . . . 8  |-  ( ( `' F " t )  e.  _V  ->  (
( `' F "
t )  e.  ran  ( x  e.  L  |->  ( `' F "
x ) )  <->  E. x  e.  L  ( `' F " t )  =  ( `' F "
x ) ) )
3330, 32syl 17 . . . . . . 7  |-  ( (
ph  /\  t  e.  L )  ->  (
( `' F "
t )  e.  ran  ( x  e.  L  |->  ( `' F "
x ) )  <->  E. x  e.  L  ( `' F " t )  =  ( `' F "
x ) ) )
3421, 33mpbird 236 . . . . . 6  |-  ( (
ph  /\  t  e.  L )  ->  ( `' F " t )  e.  ran  ( x  e.  L  |->  ( `' F " x ) ) )
3515, 34sseldd 3466 . . . . 5  |-  ( (
ph  /\  t  e.  L )  ->  ( `' F " t )  e.  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) ) )
36 ffun 5746 . . . . . . . 8  |-  ( F : Y --> X  ->  Fun  F )
37 ssid 3484 . . . . . . . 8  |-  ( `' F " t ) 
C_  ( `' F " t )
38 funimass2 5673 . . . . . . . 8  |-  ( ( Fun  F  /\  ( `' F " t ) 
C_  ( `' F " t ) )  -> 
( F " ( `' F " t ) )  C_  t )
3936, 37, 38sylancl 667 . . . . . . 7  |-  ( F : Y --> X  -> 
( F " ( `' F " t ) )  C_  t )
4025, 39syl 17 . . . . . 6  |-  ( ph  ->  ( F " ( `' F " t ) )  C_  t )
4140adantr 467 . . . . 5  |-  ( (
ph  /\  t  e.  L )  ->  ( F " ( `' F " t ) )  C_  t )
42 imaeq2 5181 . . . . . . 7  |-  ( s  =  ( `' F " t )  ->  ( F " s )  =  ( F " ( `' F " t ) ) )
4342sseq1d 3492 . . . . . 6  |-  ( s  =  ( `' F " t )  ->  (
( F " s
)  C_  t  <->  ( F " ( `' F "
t ) )  C_  t ) )
4443rspcev 3183 . . . . 5  |-  ( ( ( `' F "
t )  e.  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) )  /\  ( F " ( `' F " t ) )  C_  t )  ->  E. s  e.  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) ) ( F " s ) 
C_  t )
4535, 41, 44syl2anc 666 . . . 4  |-  ( (
ph  /\  t  e.  L )  ->  E. s  e.  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) ) ( F " s ) 
C_  t )
4645ex 436 . . 3  |-  ( ph  ->  ( t  e.  L  ->  E. s  e.  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) ) ( F " s ) 
C_  t ) )
474, 46jcad 536 . 2  |-  ( ph  ->  ( t  e.  L  ->  ( t  C_  X  /\  E. s  e.  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) ) ( F " s ) 
C_  t ) ) )
48 elfiun 7948 . . . . . . 7  |-  ( ( B  e.  ( fBas `  Y )  /\  ran  ( x  e.  L  |->  ( `' F "
x ) )  e. 
_V )  ->  (
s  e.  ( fi
`  ( B  u.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) )  <->  ( s  e.  ( fi `  B
)  \/  s  e.  ( fi `  ran  ( x  e.  L  |->  ( `' F "
x ) ) )  \/  E. z  e.  ( fi `  B
) E. w  e.  ( fi `  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) s  =  ( z  i^i  w ) ) ) )
495, 9, 48syl2anc 666 . . . . . 6  |-  ( ph  ->  ( s  e.  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) )  <->  ( s  e.  ( fi `  B
)  \/  s  e.  ( fi `  ran  ( x  e.  L  |->  ( `' F "
x ) ) )  \/  E. z  e.  ( fi `  B
) E. w  e.  ( fi `  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) s  =  ( z  i^i  w ) ) ) )
50 fmfnfm.fm . . . . . . . 8  |-  ( ph  ->  ( ( X  FilMap  F ) `  B ) 
C_  L )
515, 1, 25, 50fmfnfmlem1 20961 . . . . . . 7  |-  ( ph  ->  ( s  e.  ( fi `  B )  ->  ( ( F
" s )  C_  t  ->  ( t  C_  X  ->  t  e.  L
) ) ) )
525, 1, 25, 50fmfnfmlem3 20963 . . . . . . . . 9  |-  ( ph  ->  ( fi `  ran  ( x  e.  L  |->  ( `' F "
x ) ) )  =  ran  ( x  e.  L  |->  ( `' F " x ) ) )
5352eleq2d 2493 . . . . . . . 8  |-  ( ph  ->  ( s  e.  ( fi `  ran  (
x  e.  L  |->  ( `' F " x ) ) )  <->  s  e.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) )
54 vex 3085 . . . . . . . . . 10  |-  s  e. 
_V
5531elrnmpt 5098 . . . . . . . . . 10  |-  ( s  e.  _V  ->  (
s  e.  ran  (
x  e.  L  |->  ( `' F " x ) )  <->  E. x  e.  L  s  =  ( `' F " x ) ) )
5654, 55ax-mp 5 . . . . . . . . 9  |-  ( s  e.  ran  ( x  e.  L  |->  ( `' F " x ) )  <->  E. x  e.  L  s  =  ( `' F " x ) )
575, 1, 25, 50fmfnfmlem2 20962 . . . . . . . . 9  |-  ( ph  ->  ( E. x  e.  L  s  =  ( `' F " x )  ->  ( ( F
" s )  C_  t  ->  ( t  C_  X  ->  t  e.  L
) ) ) )
5856, 57syl5bi 221 . . . . . . . 8  |-  ( ph  ->  ( s  e.  ran  ( x  e.  L  |->  ( `' F "
x ) )  -> 
( ( F "
s )  C_  t  ->  ( t  C_  X  ->  t  e.  L ) ) ) )
5953, 58sylbid 219 . . . . . . 7  |-  ( ph  ->  ( s  e.  ( fi `  ran  (
x  e.  L  |->  ( `' F " x ) ) )  ->  (
( F " s
)  C_  t  ->  ( t  C_  X  ->  t  e.  L ) ) ) )
6052eleq2d 2493 . . . . . . . . . . . . 13  |-  ( ph  ->  ( w  e.  ( fi `  ran  (
x  e.  L  |->  ( `' F " x ) ) )  <->  w  e.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) )
61 vex 3085 . . . . . . . . . . . . . 14  |-  w  e. 
_V
6231elrnmpt 5098 . . . . . . . . . . . . . 14  |-  ( w  e.  _V  ->  (
w  e.  ran  (
x  e.  L  |->  ( `' F " x ) )  <->  E. x  e.  L  w  =  ( `' F " x ) ) )
6361, 62ax-mp 5 . . . . . . . . . . . . 13  |-  ( w  e.  ran  ( x  e.  L  |->  ( `' F " x ) )  <->  E. x  e.  L  w  =  ( `' F " x ) )
6460, 63syl6bb 265 . . . . . . . . . . . 12  |-  ( ph  ->  ( w  e.  ( fi `  ran  (
x  e.  L  |->  ( `' F " x ) ) )  <->  E. x  e.  L  w  =  ( `' F " x ) ) )
6564adantr 467 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( fi `  B ) )  ->  ( w  e.  ( fi `  ran  ( x  e.  L  |->  ( `' F "
x ) ) )  <->  E. x  e.  L  w  =  ( `' F " x ) ) )
66 fbssfi 20844 . . . . . . . . . . . . 13  |-  ( ( B  e.  ( fBas `  Y )  /\  z  e.  ( fi `  B
) )  ->  E. s  e.  B  s  C_  z )
675, 66sylan 474 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( fi `  B ) )  ->  E. s  e.  B  s  C_  z )
681ad3antrrr 735 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( s  e.  B  /\  s  C_  z ) )  /\  x  e.  L )  /\  (
( F " (
z  i^i  ( `' F " x ) ) )  C_  t  /\  t  C_  X ) )  ->  L  e.  ( Fil `  X ) )
691adantr 467 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( s  e.  B  /\  s  C_  z ) )  ->  L  e.  ( Fil `  X ) )
7050adantr 467 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  s  e.  B )  ->  (
( X  FilMap  F ) `
 B )  C_  L )
71 filtop 20862 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( L  e.  ( Fil `  X
)  ->  X  e.  L )
721, 71syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  X  e.  L )
7372, 5, 253jca 1186 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( X  e.  L  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X ) )
7473adantr 467 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  s  e.  B )  ->  ( X  e.  L  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X ) )
75 ssfg 20879 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( B  e.  ( fBas `  Y
)  ->  B  C_  ( Y filGen B ) )
765, 75syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  B  C_  ( Y filGen B ) )
7776sselda 3465 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  s  e.  B )  ->  s  e.  ( Y filGen B ) )
78 eqid 2423 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( Y
filGen B )  =  ( Y filGen B )
7978imaelfm 20958 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( X  e.  L  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  /\  s  e.  ( Y filGen B ) )  ->  ( F "
s )  e.  ( ( X  FilMap  F ) `
 B ) )
8074, 77, 79syl2anc 666 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  s  e.  B )  ->  ( F " s )  e.  ( ( X  FilMap  F ) `  B ) )
8170, 80sseldd 3466 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  s  e.  B )  ->  ( F " s )  e.  L )
8281adantrr 722 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( s  e.  B  /\  s  C_  z ) )  -> 
( F " s
)  e.  L )
8369, 82jca 535 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( s  e.  B  /\  s  C_  z ) )  -> 
( L  e.  ( Fil `  X )  /\  ( F "
s )  e.  L
) )
84 filin 20861 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( L  e.  ( Fil `  X )  /\  ( F " s )  e.  L  /\  x  e.  L )  ->  (
( F " s
)  i^i  x )  e.  L )
85843expa 1206 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( L  e.  ( Fil `  X )  /\  ( F "
s )  e.  L
)  /\  x  e.  L )  ->  (
( F " s
)  i^i  x )  e.  L )
8683, 85sylan 474 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
s  e.  B  /\  s  C_  z ) )  /\  x  e.  L
)  ->  ( ( F " s )  i^i  x )  e.  L
)
8786adantr 467 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( s  e.  B  /\  s  C_  z ) )  /\  x  e.  L )  /\  (
( F " (
z  i^i  ( `' F " x ) ) )  C_  t  /\  t  C_  X ) )  ->  ( ( F
" s )  i^i  x )  e.  L
)
88 simprr 765 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( s  e.  B  /\  s  C_  z ) )  /\  x  e.  L )  /\  (
( F " (
z  i^i  ( `' F " x ) ) )  C_  t  /\  t  C_  X ) )  ->  t  C_  X
)
89 elin 3650 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( w  e.  ( ( F
" s )  i^i  x )  <->  ( w  e.  ( F " s
)  /\  w  e.  x ) )
9025, 36syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  Fun  F )
91 fvelima 5931 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( Fun  F  /\  w  e.  ( F " s
) )  ->  E. y  e.  s  ( F `  y )  =  w )
9291ex 436 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( Fun 
F  ->  ( w  e.  ( F " s
)  ->  E. y  e.  s  ( F `  y )  =  w ) )
9390, 92syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( w  e.  ( F " s )  ->  E. y  e.  s  ( F `  y
)  =  w ) )
9493ad3antrrr 735 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  ( s  e.  B  /\  s  C_  z ) )  /\  x  e.  L )  /\  t  C_  X )  ->  (
w  e.  ( F
" s )  ->  E. y  e.  s 
( F `  y
)  =  w ) )
9590ad3antrrr 735 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  ( s  e.  B  /\  s  C_  z ) )  /\  x  e.  L )  /\  (
t  C_  X  /\  ( y  e.  s  /\  ( F `  y )  e.  x
) ) )  ->  Fun  F )
96 simplrr 770 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ph  /\  (
s  e.  B  /\  s  C_  z ) )  /\  x  e.  L
)  ->  s  C_  z )
97 simprl 763 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( t  C_  X  /\  ( y  e.  s  /\  ( F `  y )  e.  x
) )  ->  y  e.  s )
98 ssel2 3460 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( s  C_  z  /\  y  e.  s )  ->  y  e.  z )
9996, 97, 98syl2an 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( ph  /\  ( s  e.  B  /\  s  C_  z ) )  /\  x  e.  L )  /\  (
t  C_  X  /\  ( y  e.  s  /\  ( F `  y )  e.  x
) ) )  -> 
y  e.  z )
10090ad2antrr 731 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( ( ph  /\  (
s  e.  B  /\  s  C_  z ) )  /\  y  e.  s )  ->  Fun  F )
101 fbelss 20840 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( ( B  e.  ( fBas `  Y )  /\  s  e.  B )  ->  s  C_  Y )
1025, 101sylan 474 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( (
ph  /\  s  e.  B )  ->  s  C_  Y )
10327adantr 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( (
ph  /\  s  e.  B )  ->  dom  F  =  Y )
104102, 103sseqtr4d 3502 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( (
ph  /\  s  e.  B )  ->  s  C_ 
dom  F )
105104adantrr 722 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( (
ph  /\  ( s  e.  B  /\  s  C_  z ) )  -> 
s  C_  dom  F )
106105sselda 3465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( ( ph  /\  (
s  e.  B  /\  s  C_  z ) )  /\  y  e.  s )  ->  y  e.  dom  F )
107 fvimacnv 6010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( Fun  F  /\  y  e.  dom  F )  -> 
( ( F `  y )  e.  x  <->  y  e.  ( `' F " x ) ) )
108100, 106, 107syl2anc 666 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( ( ph  /\  (
s  e.  B  /\  s  C_  z ) )  /\  y  e.  s )  ->  ( ( F `  y )  e.  x  <->  y  e.  ( `' F " x ) ) )
109108biimpd 211 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( ph  /\  (
s  e.  B  /\  s  C_  z ) )  /\  y  e.  s )  ->  ( ( F `  y )  e.  x  ->  y  e.  ( `' F "
x ) ) )
110109impr 624 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ph  /\  (
s  e.  B  /\  s  C_  z ) )  /\  ( y  e.  s  /\  ( F `
 y )  e.  x ) )  -> 
y  e.  ( `' F " x ) )
111110ad2ant2rl 754 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( ph  /\  ( s  e.  B  /\  s  C_  z ) )  /\  x  e.  L )  /\  (
t  C_  X  /\  ( y  e.  s  /\  ( F `  y )  e.  x
) ) )  -> 
y  e.  ( `' F " x ) )
11299, 111elind 3651 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  ( s  e.  B  /\  s  C_  z ) )  /\  x  e.  L )  /\  (
t  C_  X  /\  ( y  e.  s  /\  ( F `  y )  e.  x
) ) )  -> 
y  e.  ( z  i^i  ( `' F " x ) ) )
113 inss2 3684 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( z  i^i  ( `' F " x ) )  C_  ( `' F " x )
114 cnvimass 5205 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( `' F " x ) 
C_  dom  F
115113, 114sstri 3474 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( z  i^i  ( `' F " x ) )  C_  dom  F
116 funfvima2 6154 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( Fun  F  /\  (
z  i^i  ( `' F " x ) ) 
C_  dom  F )  ->  ( y  e.  ( z  i^i  ( `' F " x ) )  ->  ( F `  y )  e.  ( F " ( z  i^i  ( `' F " x ) ) ) ) )
117115, 116mpan2 676 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( Fun 
F  ->  ( y  e.  ( z  i^i  ( `' F " x ) )  ->  ( F `  y )  e.  ( F " ( z  i^i  ( `' F " x ) ) ) ) )
11895, 112, 117sylc 63 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  ( s  e.  B  /\  s  C_  z ) )  /\  x  e.  L )  /\  (
t  C_  X  /\  ( y  e.  s  /\  ( F `  y )  e.  x
) ) )  -> 
( F `  y
)  e.  ( F
" ( z  i^i  ( `' F "
x ) ) ) )
119118anassrs 653 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( ph  /\  ( s  e.  B  /\  s  C_  z ) )  /\  x  e.  L )  /\  t  C_  X )  /\  (
y  e.  s  /\  ( F `  y )  e.  x ) )  ->  ( F `  y )  e.  ( F " ( z  i^i  ( `' F " x ) ) ) )
120119expr 619 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ph  /\  ( s  e.  B  /\  s  C_  z ) )  /\  x  e.  L )  /\  t  C_  X )  /\  y  e.  s )  ->  (
( F `  y
)  e.  x  -> 
( F `  y
)  e.  ( F
" ( z  i^i  ( `' F "
x ) ) ) ) )
121 eleq1 2495 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( F `  y )  =  w  ->  (
( F `  y
)  e.  x  <->  w  e.  x ) )
122 eleq1 2495 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( F `  y )  =  w  ->  (
( F `  y
)  e.  ( F
" ( z  i^i  ( `' F "
x ) ) )  <-> 
w  e.  ( F
" ( z  i^i  ( `' F "
x ) ) ) ) )
123121, 122imbi12d 322 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( F `  y )  =  w  ->  (
( ( F `  y )  e.  x  ->  ( F `  y
)  e.  ( F
" ( z  i^i  ( `' F "
x ) ) ) )  <->  ( w  e.  x  ->  w  e.  ( F " ( z  i^i  ( `' F " x ) ) ) ) ) )
124120, 123syl5ibcom 224 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ph  /\  ( s  e.  B  /\  s  C_  z ) )  /\  x  e.  L )  /\  t  C_  X )  /\  y  e.  s )  ->  (
( F `  y
)  =  w  -> 
( w  e.  x  ->  w  e.  ( F
" ( z  i^i  ( `' F "
x ) ) ) ) ) )
125124rexlimdva 2918 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  ( s  e.  B  /\  s  C_  z ) )  /\  x  e.  L )  /\  t  C_  X )  ->  ( E. y  e.  s 
( F `  y
)  =  w  -> 
( w  e.  x  ->  w  e.  ( F
" ( z  i^i  ( `' F "
x ) ) ) ) ) )
12694, 125syld 46 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  ( s  e.  B  /\  s  C_  z ) )  /\  x  e.  L )  /\  t  C_  X )  ->  (
w  e.  ( F
" s )  -> 
( w  e.  x  ->  w  e.  ( F
" ( z  i^i  ( `' F "
x ) ) ) ) ) )
127126impd 433 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  ( s  e.  B  /\  s  C_  z ) )  /\  x  e.  L )  /\  t  C_  X )  ->  (
( w  e.  ( F " s )  /\  w  e.  x
)  ->  w  e.  ( F " ( z  i^i  ( `' F " x ) ) ) ) )
12889, 127syl5bi 221 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( s  e.  B  /\  s  C_  z ) )  /\  x  e.  L )  /\  t  C_  X )  ->  (
w  e.  ( ( F " s )  i^i  x )  ->  w  e.  ( F " ( z  i^i  ( `' F " x ) ) ) ) )
129128adantrl 721 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( s  e.  B  /\  s  C_  z ) )  /\  x  e.  L )  /\  (
( F " (
z  i^i  ( `' F " x ) ) )  C_  t  /\  t  C_  X ) )  ->  ( w  e.  ( ( F "
s )  i^i  x
)  ->  w  e.  ( F " ( z  i^i  ( `' F " x ) ) ) ) )
130129ssrdv 3471 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( s  e.  B  /\  s  C_  z ) )  /\  x  e.  L )  /\  (
( F " (
z  i^i  ( `' F " x ) ) )  C_  t  /\  t  C_  X ) )  ->  ( ( F
" s )  i^i  x )  C_  ( F " ( z  i^i  ( `' F "
x ) ) ) )
131 simprl 763 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( s  e.  B  /\  s  C_  z ) )  /\  x  e.  L )  /\  (
( F " (
z  i^i  ( `' F " x ) ) )  C_  t  /\  t  C_  X ) )  ->  ( F "
( z  i^i  ( `' F " x ) ) )  C_  t
)
132130, 131sstrd 3475 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( s  e.  B  /\  s  C_  z ) )  /\  x  e.  L )  /\  (
( F " (
z  i^i  ( `' F " x ) ) )  C_  t  /\  t  C_  X ) )  ->  ( ( F
" s )  i^i  x )  C_  t
)
133 filss 20860 . . . . . . . . . . . . . . . . . 18  |-  ( ( L  e.  ( Fil `  X )  /\  (
( ( F "
s )  i^i  x
)  e.  L  /\  t  C_  X  /\  (
( F " s
)  i^i  x )  C_  t ) )  -> 
t  e.  L )
13468, 87, 88, 132, 133syl13anc 1267 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( s  e.  B  /\  s  C_  z ) )  /\  x  e.  L )  /\  (
( F " (
z  i^i  ( `' F " x ) ) )  C_  t  /\  t  C_  X ) )  ->  t  e.  L
)
135134exp32 609 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
s  e.  B  /\  s  C_  z ) )  /\  x  e.  L
)  ->  ( ( F " ( z  i^i  ( `' F "
x ) ) ) 
C_  t  ->  (
t  C_  X  ->  t  e.  L ) ) )
136 ineq2 3659 . . . . . . . . . . . . . . . . . . 19  |-  ( w  =  ( `' F " x )  ->  (
z  i^i  w )  =  ( z  i^i  ( `' F "
x ) ) )
137136imaeq2d 5185 . . . . . . . . . . . . . . . . . 18  |-  ( w  =  ( `' F " x )  ->  ( F " ( z  i^i  w ) )  =  ( F " (
z  i^i  ( `' F " x ) ) ) )
138137sseq1d 3492 . . . . . . . . . . . . . . . . 17  |-  ( w  =  ( `' F " x )  ->  (
( F " (
z  i^i  w )
)  C_  t  <->  ( F " ( z  i^i  ( `' F " x ) ) )  C_  t
) )
139138imbi1d 319 . . . . . . . . . . . . . . . 16  |-  ( w  =  ( `' F " x )  ->  (
( ( F "
( z  i^i  w
) )  C_  t  ->  ( t  C_  X  ->  t  e.  L ) )  <->  ( ( F
" ( z  i^i  ( `' F "
x ) ) ) 
C_  t  ->  (
t  C_  X  ->  t  e.  L ) ) ) )
140135, 139syl5ibrcom 226 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
s  e.  B  /\  s  C_  z ) )  /\  x  e.  L
)  ->  ( w  =  ( `' F " x )  ->  (
( F " (
z  i^i  w )
)  C_  t  ->  ( t  C_  X  ->  t  e.  L ) ) ) )
141140rexlimdva 2918 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( s  e.  B  /\  s  C_  z ) )  -> 
( E. x  e.  L  w  =  ( `' F " x )  ->  ( ( F
" ( z  i^i  w ) )  C_  t  ->  ( t  C_  X  ->  t  e.  L
) ) ) )
142141rexlimdvaa 2919 . . . . . . . . . . . . 13  |-  ( ph  ->  ( E. s  e.  B  s  C_  z  ->  ( E. x  e.  L  w  =  ( `' F " x )  ->  ( ( F
" ( z  i^i  w ) )  C_  t  ->  ( t  C_  X  ->  t  e.  L
) ) ) ) )
143142imp 431 . . . . . . . . . . . 12  |-  ( (
ph  /\  E. s  e.  B  s  C_  z )  ->  ( E. x  e.  L  w  =  ( `' F " x )  -> 
( ( F "
( z  i^i  w
) )  C_  t  ->  ( t  C_  X  ->  t  e.  L ) ) ) )
14467, 143syldan 473 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( fi `  B ) )  ->  ( E. x  e.  L  w  =  ( `' F " x )  ->  (
( F " (
z  i^i  w )
)  C_  t  ->  ( t  C_  X  ->  t  e.  L ) ) ) )
14565, 144sylbid 219 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( fi `  B ) )  ->  ( w  e.  ( fi `  ran  ( x  e.  L  |->  ( `' F "
x ) ) )  ->  ( ( F
" ( z  i^i  w ) )  C_  t  ->  ( t  C_  X  ->  t  e.  L
) ) ) )
146145impr 624 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  ( fi `  B
)  /\  w  e.  ( fi `  ran  (
x  e.  L  |->  ( `' F " x ) ) ) ) )  ->  ( ( F
" ( z  i^i  w ) )  C_  t  ->  ( t  C_  X  ->  t  e.  L
) ) )
147 imaeq2 5181 . . . . . . . . . . 11  |-  ( s  =  ( z  i^i  w )  ->  ( F " s )  =  ( F " (
z  i^i  w )
) )
148147sseq1d 3492 . . . . . . . . . 10  |-  ( s  =  ( z  i^i  w )  ->  (
( F " s
)  C_  t  <->  ( F " ( z  i^i  w
) )  C_  t
) )
149148imbi1d 319 . . . . . . . . 9  |-  ( s  =  ( z  i^i  w )  ->  (
( ( F "
s )  C_  t  ->  ( t  C_  X  ->  t  e.  L ) )  <->  ( ( F
" ( z  i^i  w ) )  C_  t  ->  ( t  C_  X  ->  t  e.  L
) ) ) )
150146, 149syl5ibrcom 226 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  ( fi `  B
)  /\  w  e.  ( fi `  ran  (
x  e.  L  |->  ( `' F " x ) ) ) ) )  ->  ( s  =  ( z  i^i  w
)  ->  ( ( F " s )  C_  t  ->  ( t  C_  X  ->  t  e.  L
) ) ) )
151150rexlimdvva 2925 . . . . . . 7  |-  ( ph  ->  ( E. z  e.  ( fi `  B
) E. w  e.  ( fi `  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) s  =  ( z  i^i  w )  -> 
( ( F "
s )  C_  t  ->  ( t  C_  X  ->  t  e.  L ) ) ) )
15251, 59, 1513jaod 1329 . . . . . 6  |-  ( ph  ->  ( ( s  e.  ( fi `  B
)  \/  s  e.  ( fi `  ran  ( x  e.  L  |->  ( `' F "
x ) ) )  \/  E. z  e.  ( fi `  B
) E. w  e.  ( fi `  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) s  =  ( z  i^i  w ) )  ->  ( ( F
" s )  C_  t  ->  ( t  C_  X  ->  t  e.  L
) ) ) )
15349, 152sylbid 219 . . . . 5  |-  ( ph  ->  ( s  e.  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) )  -> 
( ( F "
s )  C_  t  ->  ( t  C_  X  ->  t  e.  L ) ) ) )
154153rexlimdv 2916 . . . 4  |-  ( ph  ->  ( E. s  e.  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) ) ( F " s ) 
C_  t  ->  (
t  C_  X  ->  t  e.  L ) ) )
155154com23 82 . . 3  |-  ( ph  ->  ( t  C_  X  ->  ( E. s  e.  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) ) ( F " s ) 
C_  t  ->  t  e.  L ) ) )
156155impd 433 . 2  |-  ( ph  ->  ( ( t  C_  X  /\  E. s  e.  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) ) ( F " s ) 
C_  t )  -> 
t  e.  L ) )
15747, 156impbid 194 1  |-  ( ph  ->  ( t  e.  L  <->  ( t  C_  X  /\  E. s  e.  ( fi
`  ( B  u.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) ) ( F "
s )  C_  t
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    \/ w3o 982    /\ w3a 983    = wceq 1438    e. wcel 1869   E.wrex 2777   _Vcvv 3082    u. cun 3435    i^i cin 3436    C_ wss 3437    |-> cmpt 4480   `'ccnv 4850   dom cdm 4851   ran crn 4852   "cima 4854   Fun wfun 5593   -->wf 5595   ` cfv 5599  (class class class)co 6303   ficfi 7928   fBascfbas 18951   filGencfg 18952   Filcfil 20852    FilMap cfm 20940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-rep 4534  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-nel 2622  df-ral 2781  df-rex 2782  df-reu 2783  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-tp 4002  df-op 4004  df-uni 4218  df-int 4254  df-iun 4299  df-br 4422  df-opab 4481  df-mpt 4482  df-tr 4517  df-eprel 4762  df-id 4766  df-po 4772  df-so 4773  df-fr 4810  df-we 4812  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-pred 5397  df-ord 5443  df-on 5444  df-lim 5445  df-suc 5446  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-om 6705  df-wrecs 7034  df-recs 7096  df-rdg 7134  df-1o 7188  df-oadd 7192  df-er 7369  df-en 7576  df-fin 7579  df-fi 7929  df-fbas 18960  df-fg 18961  df-fil 20853  df-fm 20945
This theorem is referenced by:  fmfnfm  20965
  Copyright terms: Public domain W3C validator