MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmfnfmlem3 Structured version   Unicode version

Theorem fmfnfmlem3 19534
Description: Lemma for fmfnfm 19536. (Contributed by Jeff Hankins, 19-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypotheses
Ref Expression
fmfnfm.b  |-  ( ph  ->  B  e.  ( fBas `  Y ) )
fmfnfm.l  |-  ( ph  ->  L  e.  ( Fil `  X ) )
fmfnfm.f  |-  ( ph  ->  F : Y --> X )
fmfnfm.fm  |-  ( ph  ->  ( ( X  FilMap  F ) `  B ) 
C_  L )
Assertion
Ref Expression
fmfnfmlem3  |-  ( ph  ->  ( fi `  ran  ( x  e.  L  |->  ( `' F "
x ) ) )  =  ran  ( x  e.  L  |->  ( `' F " x ) ) )
Distinct variable groups:    x, B    x, F    x, L    ph, x    x, X    x, Y

Proof of Theorem fmfnfmlem3
Dummy variables  s 
t  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmfnfm.l . . . . . . . 8  |-  ( ph  ->  L  e.  ( Fil `  X ) )
2 filin 19432 . . . . . . . . 9  |-  ( ( L  e.  ( Fil `  X )  /\  y  e.  L  /\  z  e.  L )  ->  (
y  i^i  z )  e.  L )
323expb 1188 . . . . . . . 8  |-  ( ( L  e.  ( Fil `  X )  /\  (
y  e.  L  /\  z  e.  L )
)  ->  ( y  i^i  z )  e.  L
)
41, 3sylan 471 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  L  /\  z  e.  L ) )  -> 
( y  i^i  z
)  e.  L )
5 fmfnfm.f . . . . . . . . 9  |-  ( ph  ->  F : Y --> X )
6 ffun 5566 . . . . . . . . 9  |-  ( F : Y --> X  ->  Fun  F )
7 funcnvcnv 5481 . . . . . . . . 9  |-  ( Fun 
F  ->  Fun  `' `' F )
8 imain 5499 . . . . . . . . . 10  |-  ( Fun  `' `' F  ->  ( `' F " ( y  i^i  z ) )  =  ( ( `' F " y )  i^i  ( `' F " z ) ) )
98eqcomd 2448 . . . . . . . . 9  |-  ( Fun  `' `' F  ->  ( ( `' F " y )  i^i  ( `' F " z ) )  =  ( `' F "
( y  i^i  z
) ) )
105, 6, 7, 94syl 21 . . . . . . . 8  |-  ( ph  ->  ( ( `' F " y )  i^i  ( `' F " z ) )  =  ( `' F " ( y  i^i  z ) ) )
1110adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  L  /\  z  e.  L ) )  -> 
( ( `' F " y )  i^i  ( `' F " z ) )  =  ( `' F " ( y  i^i  z ) ) )
12 imaeq2 5170 . . . . . . . . 9  |-  ( x  =  ( y  i^i  z )  ->  ( `' F " x )  =  ( `' F " ( y  i^i  z
) ) )
1312eqeq2d 2454 . . . . . . . 8  |-  ( x  =  ( y  i^i  z )  ->  (
( ( `' F " y )  i^i  ( `' F " z ) )  =  ( `' F " x )  <-> 
( ( `' F " y )  i^i  ( `' F " z ) )  =  ( `' F " ( y  i^i  z ) ) ) )
1413rspcev 3078 . . . . . . 7  |-  ( ( ( y  i^i  z
)  e.  L  /\  ( ( `' F " y )  i^i  ( `' F " z ) )  =  ( `' F " ( y  i^i  z ) ) )  ->  E. x  e.  L  ( ( `' F " y )  i^i  ( `' F " z ) )  =  ( `' F "
x ) )
154, 11, 14syl2anc 661 . . . . . 6  |-  ( (
ph  /\  ( y  e.  L  /\  z  e.  L ) )  ->  E. x  e.  L  ( ( `' F " y )  i^i  ( `' F " z ) )  =  ( `' F " x ) )
16 ineq12 3552 . . . . . . . 8  |-  ( ( s  =  ( `' F " y )  /\  t  =  ( `' F " z ) )  ->  ( s  i^i  t )  =  ( ( `' F "
y )  i^i  ( `' F " z ) ) )
1716eqeq1d 2451 . . . . . . 7  |-  ( ( s  =  ( `' F " y )  /\  t  =  ( `' F " z ) )  ->  ( (
s  i^i  t )  =  ( `' F " x )  <->  ( ( `' F " y )  i^i  ( `' F " z ) )  =  ( `' F "
x ) ) )
1817rexbidv 2741 . . . . . 6  |-  ( ( s  =  ( `' F " y )  /\  t  =  ( `' F " z ) )  ->  ( E. x  e.  L  (
s  i^i  t )  =  ( `' F " x )  <->  E. x  e.  L  ( ( `' F " y )  i^i  ( `' F " z ) )  =  ( `' F "
x ) ) )
1915, 18syl5ibrcom 222 . . . . 5  |-  ( (
ph  /\  ( y  e.  L  /\  z  e.  L ) )  -> 
( ( s  =  ( `' F "
y )  /\  t  =  ( `' F " z ) )  ->  E. x  e.  L  ( s  i^i  t
)  =  ( `' F " x ) ) )
2019rexlimdvva 2853 . . . 4  |-  ( ph  ->  ( E. y  e.  L  E. z  e.  L  ( s  =  ( `' F "
y )  /\  t  =  ( `' F " z ) )  ->  E. x  e.  L  ( s  i^i  t
)  =  ( `' F " x ) ) )
21 imaeq2 5170 . . . . . . . 8  |-  ( x  =  y  ->  ( `' F " x )  =  ( `' F " y ) )
2221eqeq2d 2454 . . . . . . 7  |-  ( x  =  y  ->  (
s  =  ( `' F " x )  <-> 
s  =  ( `' F " y ) ) )
2322cbvrexv 2953 . . . . . 6  |-  ( E. x  e.  L  s  =  ( `' F " x )  <->  E. y  e.  L  s  =  ( `' F " y ) )
24 imaeq2 5170 . . . . . . . 8  |-  ( x  =  z  ->  ( `' F " x )  =  ( `' F " z ) )
2524eqeq2d 2454 . . . . . . 7  |-  ( x  =  z  ->  (
t  =  ( `' F " x )  <-> 
t  =  ( `' F " z ) ) )
2625cbvrexv 2953 . . . . . 6  |-  ( E. x  e.  L  t  =  ( `' F " x )  <->  E. z  e.  L  t  =  ( `' F " z ) )
2723, 26anbi12i 697 . . . . 5  |-  ( ( E. x  e.  L  s  =  ( `' F " x )  /\  E. x  e.  L  t  =  ( `' F " x ) )  <->  ( E. y  e.  L  s  =  ( `' F " y )  /\  E. z  e.  L  t  =  ( `' F " z ) ) )
28 vex 2980 . . . . . . 7  |-  s  e. 
_V
29 eqid 2443 . . . . . . . 8  |-  ( x  e.  L  |->  ( `' F " x ) )  =  ( x  e.  L  |->  ( `' F " x ) )
3029elrnmpt 5091 . . . . . . 7  |-  ( s  e.  _V  ->  (
s  e.  ran  (
x  e.  L  |->  ( `' F " x ) )  <->  E. x  e.  L  s  =  ( `' F " x ) ) )
3128, 30ax-mp 5 . . . . . 6  |-  ( s  e.  ran  ( x  e.  L  |->  ( `' F " x ) )  <->  E. x  e.  L  s  =  ( `' F " x ) )
32 vex 2980 . . . . . . 7  |-  t  e. 
_V
3329elrnmpt 5091 . . . . . . 7  |-  ( t  e.  _V  ->  (
t  e.  ran  (
x  e.  L  |->  ( `' F " x ) )  <->  E. x  e.  L  t  =  ( `' F " x ) ) )
3432, 33ax-mp 5 . . . . . 6  |-  ( t  e.  ran  ( x  e.  L  |->  ( `' F " x ) )  <->  E. x  e.  L  t  =  ( `' F " x ) )
3531, 34anbi12i 697 . . . . 5  |-  ( ( s  e.  ran  (
x  e.  L  |->  ( `' F " x ) )  /\  t  e. 
ran  ( x  e.  L  |->  ( `' F " x ) ) )  <-> 
( E. x  e.  L  s  =  ( `' F " x )  /\  E. x  e.  L  t  =  ( `' F " x ) ) )
36 reeanv 2893 . . . . 5  |-  ( E. y  e.  L  E. z  e.  L  (
s  =  ( `' F " y )  /\  t  =  ( `' F " z ) )  <->  ( E. y  e.  L  s  =  ( `' F " y )  /\  E. z  e.  L  t  =  ( `' F " z ) ) )
3727, 35, 363bitr4i 277 . . . 4  |-  ( ( s  e.  ran  (
x  e.  L  |->  ( `' F " x ) )  /\  t  e. 
ran  ( x  e.  L  |->  ( `' F " x ) ) )  <->  E. y  e.  L  E. z  e.  L  ( s  =  ( `' F " y )  /\  t  =  ( `' F " z ) ) )
3828inex1 4438 . . . . 5  |-  ( s  i^i  t )  e. 
_V
3929elrnmpt 5091 . . . . 5  |-  ( ( s  i^i  t )  e.  _V  ->  (
( s  i^i  t
)  e.  ran  (
x  e.  L  |->  ( `' F " x ) )  <->  E. x  e.  L  ( s  i^i  t
)  =  ( `' F " x ) ) )
4038, 39ax-mp 5 . . . 4  |-  ( ( s  i^i  t )  e.  ran  ( x  e.  L  |->  ( `' F " x ) )  <->  E. x  e.  L  ( s  i^i  t
)  =  ( `' F " x ) )
4120, 37, 403imtr4g 270 . . 3  |-  ( ph  ->  ( ( s  e. 
ran  ( x  e.  L  |->  ( `' F " x ) )  /\  t  e.  ran  ( x  e.  L  |->  ( `' F " x ) ) )  ->  (
s  i^i  t )  e.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) )
4241ralrimivv 2812 . 2  |-  ( ph  ->  A. s  e.  ran  ( x  e.  L  |->  ( `' F "
x ) ) A. t  e.  ran  ( x  e.  L  |->  ( `' F " x ) ) ( s  i^i  t )  e.  ran  ( x  e.  L  |->  ( `' F "
x ) ) )
43 mptexg 5952 . . 3  |-  ( L  e.  ( Fil `  X
)  ->  ( x  e.  L  |->  ( `' F " x ) )  e.  _V )
44 rnexg 6515 . . 3  |-  ( ( x  e.  L  |->  ( `' F " x ) )  e.  _V  ->  ran  ( x  e.  L  |->  ( `' F "
x ) )  e. 
_V )
45 inficl 7680 . . 3  |-  ( ran  ( x  e.  L  |->  ( `' F "
x ) )  e. 
_V  ->  ( A. s  e.  ran  ( x  e.  L  |->  ( `' F " x ) ) A. t  e.  ran  ( x  e.  L  |->  ( `' F " x ) ) ( s  i^i  t )  e.  ran  ( x  e.  L  |->  ( `' F "
x ) )  <->  ( fi ` 
ran  ( x  e.  L  |->  ( `' F " x ) ) )  =  ran  ( x  e.  L  |->  ( `' F " x ) ) ) )
461, 43, 44, 454syl 21 . 2  |-  ( ph  ->  ( A. s  e. 
ran  ( x  e.  L  |->  ( `' F " x ) ) A. t  e.  ran  ( x  e.  L  |->  ( `' F " x ) ) ( s  i^i  t )  e.  ran  ( x  e.  L  |->  ( `' F "
x ) )  <->  ( fi ` 
ran  ( x  e.  L  |->  ( `' F " x ) ) )  =  ran  ( x  e.  L  |->  ( `' F " x ) ) ) )
4742, 46mpbid 210 1  |-  ( ph  ->  ( fi `  ran  ( x  e.  L  |->  ( `' F "
x ) ) )  =  ran  ( x  e.  L  |->  ( `' F " x ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2720   E.wrex 2721   _Vcvv 2977    i^i cin 3332    C_ wss 3333    e. cmpt 4355   `'ccnv 4844   ran crn 4846   "cima 4848   Fun wfun 5417   -->wf 5419   ` cfv 5423  (class class class)co 6096   ficfi 7665   fBascfbas 17809   Filcfil 19423    FilMap cfm 19511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-int 4134  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-om 6482  df-recs 6837  df-rdg 6871  df-1o 6925  df-oadd 6929  df-er 7106  df-en 7316  df-fin 7319  df-fi 7666  df-fbas 17819  df-fil 19424
This theorem is referenced by:  fmfnfmlem4  19535
  Copyright terms: Public domain W3C validator