MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmfnfmlem2 Structured version   Unicode version

Theorem fmfnfmlem2 20582
Description: Lemma for fmfnfm 20585. (Contributed by Jeff Hankins, 19-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypotheses
Ref Expression
fmfnfm.b  |-  ( ph  ->  B  e.  ( fBas `  Y ) )
fmfnfm.l  |-  ( ph  ->  L  e.  ( Fil `  X ) )
fmfnfm.f  |-  ( ph  ->  F : Y --> X )
fmfnfm.fm  |-  ( ph  ->  ( ( X  FilMap  F ) `  B ) 
C_  L )
Assertion
Ref Expression
fmfnfmlem2  |-  ( ph  ->  ( E. x  e.  L  s  =  ( `' F " x )  ->  ( ( F
" s )  C_  t  ->  ( t  C_  X  ->  t  e.  L
) ) ) )
Distinct variable groups:    t, s, x, B    F, s, t, x    L, s, t, x    ph, s, t, x    X, s, t, x    Y, s, t, x

Proof of Theorem fmfnfmlem2
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmfnfm.l . . . . . 6  |-  ( ph  ->  L  e.  ( Fil `  X ) )
21ad2antrr 725 . . . . 5  |-  ( ( ( ph  /\  x  e.  L )  /\  (
( F " ( `' F " x ) )  C_  t  /\  t  C_  X ) )  ->  L  e.  ( Fil `  X ) )
3 simplr 755 . . . . . 6  |-  ( ( ( ph  /\  x  e.  L )  /\  (
( F " ( `' F " x ) )  C_  t  /\  t  C_  X ) )  ->  x  e.  L
)
4 fmfnfm.fm . . . . . . . 8  |-  ( ph  ->  ( ( X  FilMap  F ) `  B ) 
C_  L )
5 fmfnfm.f . . . . . . . . . 10  |-  ( ph  ->  F : Y --> X )
6 ffn 5737 . . . . . . . . . . 11  |-  ( F : Y --> X  ->  F  Fn  Y )
7 dffn4 5807 . . . . . . . . . . 11  |-  ( F  Fn  Y  <->  F : Y -onto-> ran  F )
86, 7sylib 196 . . . . . . . . . 10  |-  ( F : Y --> X  ->  F : Y -onto-> ran  F
)
9 foima 5806 . . . . . . . . . 10  |-  ( F : Y -onto-> ran  F  ->  ( F " Y
)  =  ran  F
)
105, 8, 93syl 20 . . . . . . . . 9  |-  ( ph  ->  ( F " Y
)  =  ran  F
)
11 filtop 20482 . . . . . . . . . . 11  |-  ( L  e.  ( Fil `  X
)  ->  X  e.  L )
121, 11syl 16 . . . . . . . . . 10  |-  ( ph  ->  X  e.  L )
13 fmfnfm.b . . . . . . . . . 10  |-  ( ph  ->  B  e.  ( fBas `  Y ) )
14 fgcl 20505 . . . . . . . . . . 11  |-  ( B  e.  ( fBas `  Y
)  ->  ( Y filGen B )  e.  ( Fil `  Y ) )
15 filtop 20482 . . . . . . . . . . 11  |-  ( ( Y filGen B )  e.  ( Fil `  Y
)  ->  Y  e.  ( Y filGen B ) )
1613, 14, 153syl 20 . . . . . . . . . 10  |-  ( ph  ->  Y  e.  ( Y
filGen B ) )
17 eqid 2457 . . . . . . . . . . 11  |-  ( Y
filGen B )  =  ( Y filGen B )
1817imaelfm 20578 . . . . . . . . . 10  |-  ( ( ( X  e.  L  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  /\  Y  e.  ( Y filGen B ) )  ->  ( F " Y )  e.  ( ( X  FilMap  F ) `
 B ) )
1912, 13, 5, 16, 18syl31anc 1231 . . . . . . . . 9  |-  ( ph  ->  ( F " Y
)  e.  ( ( X  FilMap  F ) `  B ) )
2010, 19eqeltrrd 2546 . . . . . . . 8  |-  ( ph  ->  ran  F  e.  ( ( X  FilMap  F ) `
 B ) )
214, 20sseldd 3500 . . . . . . 7  |-  ( ph  ->  ran  F  e.  L
)
2221ad2antrr 725 . . . . . 6  |-  ( ( ( ph  /\  x  e.  L )  /\  (
( F " ( `' F " x ) )  C_  t  /\  t  C_  X ) )  ->  ran  F  e.  L )
23 filin 20481 . . . . . 6  |-  ( ( L  e.  ( Fil `  X )  /\  x  e.  L  /\  ran  F  e.  L )  ->  (
x  i^i  ran  F )  e.  L )
242, 3, 22, 23syl3anc 1228 . . . . 5  |-  ( ( ( ph  /\  x  e.  L )  /\  (
( F " ( `' F " x ) )  C_  t  /\  t  C_  X ) )  ->  ( x  i^i 
ran  F )  e.  L )
25 simprr 757 . . . . 5  |-  ( ( ( ph  /\  x  e.  L )  /\  (
( F " ( `' F " x ) )  C_  t  /\  t  C_  X ) )  ->  t  C_  X
)
26 elin 3683 . . . . . . 7  |-  ( y  e.  ( x  i^i 
ran  F )  <->  ( y  e.  x  /\  y  e.  ran  F ) )
27 fvelrnb 5920 . . . . . . . . . . . . 13  |-  ( F  Fn  Y  ->  (
y  e.  ran  F  <->  E. z  e.  Y  ( F `  z )  =  y ) )
285, 6, 273syl 20 . . . . . . . . . . . 12  |-  ( ph  ->  ( y  e.  ran  F  <->  E. z  e.  Y  ( F `  z )  =  y ) )
2928ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  L )  /\  ( F " ( `' F " x ) )  C_  t )  ->  (
y  e.  ran  F  <->  E. z  e.  Y  ( F `  z )  =  y ) )
30 ffun 5739 . . . . . . . . . . . . . . . . . 18  |-  ( F : Y --> X  ->  Fun  F )
315, 30syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  Fun  F )
3231ad2antrr 725 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  L )  /\  (
( F " ( `' F " x ) )  C_  t  /\  z  e.  Y )
)  ->  Fun  F )
33 simprr 757 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  L )  /\  (
( F " ( `' F " x ) )  C_  t  /\  z  e.  Y )
)  ->  z  e.  Y )
34 fdm 5741 . . . . . . . . . . . . . . . . . . 19  |-  ( F : Y --> X  ->  dom  F  =  Y )
355, 34syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  dom  F  =  Y )
3635ad2antrr 725 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  L )  /\  (
( F " ( `' F " x ) )  C_  t  /\  z  e.  Y )
)  ->  dom  F  =  Y )
3733, 36eleqtrrd 2548 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  L )  /\  (
( F " ( `' F " x ) )  C_  t  /\  z  e.  Y )
)  ->  z  e.  dom  F )
38 fvimacnv 6003 . . . . . . . . . . . . . . . 16  |-  ( ( Fun  F  /\  z  e.  dom  F )  -> 
( ( F `  z )  e.  x  <->  z  e.  ( `' F " x ) ) )
3932, 37, 38syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  L )  /\  (
( F " ( `' F " x ) )  C_  t  /\  z  e.  Y )
)  ->  ( ( F `  z )  e.  x  <->  z  e.  ( `' F " x ) ) )
40 cnvimass 5367 . . . . . . . . . . . . . . . . 17  |-  ( `' F " x ) 
C_  dom  F
41 funfvima2 6149 . . . . . . . . . . . . . . . . 17  |-  ( ( Fun  F  /\  ( `' F " x ) 
C_  dom  F )  ->  ( z  e.  ( `' F " x )  ->  ( F `  z )  e.  ( F " ( `' F " x ) ) ) )
4232, 40, 41sylancl 662 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  L )  /\  (
( F " ( `' F " x ) )  C_  t  /\  z  e.  Y )
)  ->  ( z  e.  ( `' F "
x )  ->  ( F `  z )  e.  ( F " ( `' F " x ) ) ) )
43 ssel 3493 . . . . . . . . . . . . . . . . 17  |-  ( ( F " ( `' F " x ) )  C_  t  ->  ( ( F `  z
)  e.  ( F
" ( `' F " x ) )  -> 
( F `  z
)  e.  t ) )
4443ad2antrl 727 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  L )  /\  (
( F " ( `' F " x ) )  C_  t  /\  z  e.  Y )
)  ->  ( ( F `  z )  e.  ( F " ( `' F " x ) )  ->  ( F `  z )  e.  t ) )
4542, 44syld 44 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  L )  /\  (
( F " ( `' F " x ) )  C_  t  /\  z  e.  Y )
)  ->  ( z  e.  ( `' F "
x )  ->  ( F `  z )  e.  t ) )
4639, 45sylbid 215 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  L )  /\  (
( F " ( `' F " x ) )  C_  t  /\  z  e.  Y )
)  ->  ( ( F `  z )  e.  x  ->  ( F `
 z )  e.  t ) )
47 eleq1 2529 . . . . . . . . . . . . . . 15  |-  ( ( F `  z )  =  y  ->  (
( F `  z
)  e.  x  <->  y  e.  x ) )
48 eleq1 2529 . . . . . . . . . . . . . . 15  |-  ( ( F `  z )  =  y  ->  (
( F `  z
)  e.  t  <->  y  e.  t ) )
4947, 48imbi12d 320 . . . . . . . . . . . . . 14  |-  ( ( F `  z )  =  y  ->  (
( ( F `  z )  e.  x  ->  ( F `  z
)  e.  t )  <-> 
( y  e.  x  ->  y  e.  t ) ) )
5046, 49syl5ibcom 220 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  L )  /\  (
( F " ( `' F " x ) )  C_  t  /\  z  e.  Y )
)  ->  ( ( F `  z )  =  y  ->  ( y  e.  x  ->  y  e.  t ) ) )
5150expr 615 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  L )  /\  ( F " ( `' F " x ) )  C_  t )  ->  (
z  e.  Y  -> 
( ( F `  z )  =  y  ->  ( y  e.  x  ->  y  e.  t ) ) ) )
5251rexlimdv 2947 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  L )  /\  ( F " ( `' F " x ) )  C_  t )  ->  ( E. z  e.  Y  ( F `  z )  =  y  ->  (
y  e.  x  -> 
y  e.  t ) ) )
5329, 52sylbid 215 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  L )  /\  ( F " ( `' F " x ) )  C_  t )  ->  (
y  e.  ran  F  ->  ( y  e.  x  ->  y  e.  t ) ) )
5453com23 78 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  L )  /\  ( F " ( `' F " x ) )  C_  t )  ->  (
y  e.  x  -> 
( y  e.  ran  F  ->  y  e.  t ) ) )
5554impd 431 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  L )  /\  ( F " ( `' F " x ) )  C_  t )  ->  (
( y  e.  x  /\  y  e.  ran  F )  ->  y  e.  t ) )
5655adantrr 716 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  L )  /\  (
( F " ( `' F " x ) )  C_  t  /\  t  C_  X ) )  ->  ( ( y  e.  x  /\  y  e.  ran  F )  -> 
y  e.  t ) )
5726, 56syl5bi 217 . . . . . 6  |-  ( ( ( ph  /\  x  e.  L )  /\  (
( F " ( `' F " x ) )  C_  t  /\  t  C_  X ) )  ->  ( y  e.  ( x  i^i  ran  F )  ->  y  e.  t ) )
5857ssrdv 3505 . . . . 5  |-  ( ( ( ph  /\  x  e.  L )  /\  (
( F " ( `' F " x ) )  C_  t  /\  t  C_  X ) )  ->  ( x  i^i 
ran  F )  C_  t )
59 filss 20480 . . . . 5  |-  ( ( L  e.  ( Fil `  X )  /\  (
( x  i^i  ran  F )  e.  L  /\  t  C_  X  /\  (
x  i^i  ran  F ) 
C_  t ) )  ->  t  e.  L
)
602, 24, 25, 58, 59syl13anc 1230 . . . 4  |-  ( ( ( ph  /\  x  e.  L )  /\  (
( F " ( `' F " x ) )  C_  t  /\  t  C_  X ) )  ->  t  e.  L
)
6160exp32 605 . . 3  |-  ( (
ph  /\  x  e.  L )  ->  (
( F " ( `' F " x ) )  C_  t  ->  ( t  C_  X  ->  t  e.  L ) ) )
62 imaeq2 5343 . . . . 5  |-  ( s  =  ( `' F " x )  ->  ( F " s )  =  ( F " ( `' F " x ) ) )
6362sseq1d 3526 . . . 4  |-  ( s  =  ( `' F " x )  ->  (
( F " s
)  C_  t  <->  ( F " ( `' F "
x ) )  C_  t ) )
6463imbi1d 317 . . 3  |-  ( s  =  ( `' F " x )  ->  (
( ( F "
s )  C_  t  ->  ( t  C_  X  ->  t  e.  L ) )  <->  ( ( F
" ( `' F " x ) )  C_  t  ->  ( t  C_  X  ->  t  e.  L
) ) ) )
6561, 64syl5ibrcom 222 . 2  |-  ( (
ph  /\  x  e.  L )  ->  (
s  =  ( `' F " x )  ->  ( ( F
" s )  C_  t  ->  ( t  C_  X  ->  t  e.  L
) ) ) )
6665rexlimdva 2949 1  |-  ( ph  ->  ( E. x  e.  L  s  =  ( `' F " x )  ->  ( ( F
" s )  C_  t  ->  ( t  C_  X  ->  t  e.  L
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819   E.wrex 2808    i^i cin 3470    C_ wss 3471   `'ccnv 5007   dom cdm 5008   ran crn 5009   "cima 5011   Fun wfun 5588    Fn wfn 5589   -->wf 5590   -onto->wfo 5592   ` cfv 5594  (class class class)co 6296   fBascfbas 18533   filGencfg 18534   Filcfil 20472    FilMap cfm 20560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-fbas 18543  df-fg 18544  df-fil 20473  df-fm 20565
This theorem is referenced by:  fmfnfmlem4  20584
  Copyright terms: Public domain W3C validator