MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmfnfmlem2 Structured version   Visualization version   Unicode version

Theorem fmfnfmlem2 21048
Description: Lemma for fmfnfm 21051. (Contributed by Jeff Hankins, 19-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypotheses
Ref Expression
fmfnfm.b  |-  ( ph  ->  B  e.  ( fBas `  Y ) )
fmfnfm.l  |-  ( ph  ->  L  e.  ( Fil `  X ) )
fmfnfm.f  |-  ( ph  ->  F : Y --> X )
fmfnfm.fm  |-  ( ph  ->  ( ( X  FilMap  F ) `  B ) 
C_  L )
Assertion
Ref Expression
fmfnfmlem2  |-  ( ph  ->  ( E. x  e.  L  s  =  ( `' F " x )  ->  ( ( F
" s )  C_  t  ->  ( t  C_  X  ->  t  e.  L
) ) ) )
Distinct variable groups:    t, s, x, B    F, s, t, x    L, s, t, x    ph, s, t, x    X, s, t, x    Y, s, t, x

Proof of Theorem fmfnfmlem2
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmfnfm.l . . . . . 6  |-  ( ph  ->  L  e.  ( Fil `  X ) )
21ad2antrr 740 . . . . 5  |-  ( ( ( ph  /\  x  e.  L )  /\  (
( F " ( `' F " x ) )  C_  t  /\  t  C_  X ) )  ->  L  e.  ( Fil `  X ) )
3 simplr 770 . . . . . 6  |-  ( ( ( ph  /\  x  e.  L )  /\  (
( F " ( `' F " x ) )  C_  t  /\  t  C_  X ) )  ->  x  e.  L
)
4 fmfnfm.fm . . . . . . . 8  |-  ( ph  ->  ( ( X  FilMap  F ) `  B ) 
C_  L )
5 fmfnfm.f . . . . . . . . . 10  |-  ( ph  ->  F : Y --> X )
6 ffn 5739 . . . . . . . . . . 11  |-  ( F : Y --> X  ->  F  Fn  Y )
7 dffn4 5812 . . . . . . . . . . 11  |-  ( F  Fn  Y  <->  F : Y -onto-> ran  F )
86, 7sylib 201 . . . . . . . . . 10  |-  ( F : Y --> X  ->  F : Y -onto-> ran  F
)
9 foima 5811 . . . . . . . . . 10  |-  ( F : Y -onto-> ran  F  ->  ( F " Y
)  =  ran  F
)
105, 8, 93syl 18 . . . . . . . . 9  |-  ( ph  ->  ( F " Y
)  =  ran  F
)
11 filtop 20948 . . . . . . . . . . 11  |-  ( L  e.  ( Fil `  X
)  ->  X  e.  L )
121, 11syl 17 . . . . . . . . . 10  |-  ( ph  ->  X  e.  L )
13 fmfnfm.b . . . . . . . . . 10  |-  ( ph  ->  B  e.  ( fBas `  Y ) )
14 fgcl 20971 . . . . . . . . . . 11  |-  ( B  e.  ( fBas `  Y
)  ->  ( Y filGen B )  e.  ( Fil `  Y ) )
15 filtop 20948 . . . . . . . . . . 11  |-  ( ( Y filGen B )  e.  ( Fil `  Y
)  ->  Y  e.  ( Y filGen B ) )
1613, 14, 153syl 18 . . . . . . . . . 10  |-  ( ph  ->  Y  e.  ( Y
filGen B ) )
17 eqid 2471 . . . . . . . . . . 11  |-  ( Y
filGen B )  =  ( Y filGen B )
1817imaelfm 21044 . . . . . . . . . 10  |-  ( ( ( X  e.  L  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  /\  Y  e.  ( Y filGen B ) )  ->  ( F " Y )  e.  ( ( X  FilMap  F ) `
 B ) )
1912, 13, 5, 16, 18syl31anc 1295 . . . . . . . . 9  |-  ( ph  ->  ( F " Y
)  e.  ( ( X  FilMap  F ) `  B ) )
2010, 19eqeltrrd 2550 . . . . . . . 8  |-  ( ph  ->  ran  F  e.  ( ( X  FilMap  F ) `
 B ) )
214, 20sseldd 3419 . . . . . . 7  |-  ( ph  ->  ran  F  e.  L
)
2221ad2antrr 740 . . . . . 6  |-  ( ( ( ph  /\  x  e.  L )  /\  (
( F " ( `' F " x ) )  C_  t  /\  t  C_  X ) )  ->  ran  F  e.  L )
23 filin 20947 . . . . . 6  |-  ( ( L  e.  ( Fil `  X )  /\  x  e.  L  /\  ran  F  e.  L )  ->  (
x  i^i  ran  F )  e.  L )
242, 3, 22, 23syl3anc 1292 . . . . 5  |-  ( ( ( ph  /\  x  e.  L )  /\  (
( F " ( `' F " x ) )  C_  t  /\  t  C_  X ) )  ->  ( x  i^i 
ran  F )  e.  L )
25 simprr 774 . . . . 5  |-  ( ( ( ph  /\  x  e.  L )  /\  (
( F " ( `' F " x ) )  C_  t  /\  t  C_  X ) )  ->  t  C_  X
)
26 elin 3608 . . . . . . 7  |-  ( y  e.  ( x  i^i 
ran  F )  <->  ( y  e.  x  /\  y  e.  ran  F ) )
27 fvelrnb 5926 . . . . . . . . . . . . 13  |-  ( F  Fn  Y  ->  (
y  e.  ran  F  <->  E. z  e.  Y  ( F `  z )  =  y ) )
285, 6, 273syl 18 . . . . . . . . . . . 12  |-  ( ph  ->  ( y  e.  ran  F  <->  E. z  e.  Y  ( F `  z )  =  y ) )
2928ad2antrr 740 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  L )  /\  ( F " ( `' F " x ) )  C_  t )  ->  (
y  e.  ran  F  <->  E. z  e.  Y  ( F `  z )  =  y ) )
30 ffun 5742 . . . . . . . . . . . . . . . . . 18  |-  ( F : Y --> X  ->  Fun  F )
315, 30syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  Fun  F )
3231ad2antrr 740 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  L )  /\  (
( F " ( `' F " x ) )  C_  t  /\  z  e.  Y )
)  ->  Fun  F )
33 simprr 774 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  L )  /\  (
( F " ( `' F " x ) )  C_  t  /\  z  e.  Y )
)  ->  z  e.  Y )
34 fdm 5745 . . . . . . . . . . . . . . . . . . 19  |-  ( F : Y --> X  ->  dom  F  =  Y )
355, 34syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  dom  F  =  Y )
3635ad2antrr 740 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  L )  /\  (
( F " ( `' F " x ) )  C_  t  /\  z  e.  Y )
)  ->  dom  F  =  Y )
3733, 36eleqtrrd 2552 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  L )  /\  (
( F " ( `' F " x ) )  C_  t  /\  z  e.  Y )
)  ->  z  e.  dom  F )
38 fvimacnv 6012 . . . . . . . . . . . . . . . 16  |-  ( ( Fun  F  /\  z  e.  dom  F )  -> 
( ( F `  z )  e.  x  <->  z  e.  ( `' F " x ) ) )
3932, 37, 38syl2anc 673 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  L )  /\  (
( F " ( `' F " x ) )  C_  t  /\  z  e.  Y )
)  ->  ( ( F `  z )  e.  x  <->  z  e.  ( `' F " x ) ) )
40 cnvimass 5194 . . . . . . . . . . . . . . . . 17  |-  ( `' F " x ) 
C_  dom  F
41 funfvima2 6158 . . . . . . . . . . . . . . . . 17  |-  ( ( Fun  F  /\  ( `' F " x ) 
C_  dom  F )  ->  ( z  e.  ( `' F " x )  ->  ( F `  z )  e.  ( F " ( `' F " x ) ) ) )
4232, 40, 41sylancl 675 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  L )  /\  (
( F " ( `' F " x ) )  C_  t  /\  z  e.  Y )
)  ->  ( z  e.  ( `' F "
x )  ->  ( F `  z )  e.  ( F " ( `' F " x ) ) ) )
43 ssel 3412 . . . . . . . . . . . . . . . . 17  |-  ( ( F " ( `' F " x ) )  C_  t  ->  ( ( F `  z
)  e.  ( F
" ( `' F " x ) )  -> 
( F `  z
)  e.  t ) )
4443ad2antrl 742 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  L )  /\  (
( F " ( `' F " x ) )  C_  t  /\  z  e.  Y )
)  ->  ( ( F `  z )  e.  ( F " ( `' F " x ) )  ->  ( F `  z )  e.  t ) )
4542, 44syld 44 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  L )  /\  (
( F " ( `' F " x ) )  C_  t  /\  z  e.  Y )
)  ->  ( z  e.  ( `' F "
x )  ->  ( F `  z )  e.  t ) )
4639, 45sylbid 223 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  L )  /\  (
( F " ( `' F " x ) )  C_  t  /\  z  e.  Y )
)  ->  ( ( F `  z )  e.  x  ->  ( F `
 z )  e.  t ) )
47 eleq1 2537 . . . . . . . . . . . . . . 15  |-  ( ( F `  z )  =  y  ->  (
( F `  z
)  e.  x  <->  y  e.  x ) )
48 eleq1 2537 . . . . . . . . . . . . . . 15  |-  ( ( F `  z )  =  y  ->  (
( F `  z
)  e.  t  <->  y  e.  t ) )
4947, 48imbi12d 327 . . . . . . . . . . . . . 14  |-  ( ( F `  z )  =  y  ->  (
( ( F `  z )  e.  x  ->  ( F `  z
)  e.  t )  <-> 
( y  e.  x  ->  y  e.  t ) ) )
5046, 49syl5ibcom 228 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  L )  /\  (
( F " ( `' F " x ) )  C_  t  /\  z  e.  Y )
)  ->  ( ( F `  z )  =  y  ->  ( y  e.  x  ->  y  e.  t ) ) )
5150expr 626 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  L )  /\  ( F " ( `' F " x ) )  C_  t )  ->  (
z  e.  Y  -> 
( ( F `  z )  =  y  ->  ( y  e.  x  ->  y  e.  t ) ) ) )
5251rexlimdv 2870 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  L )  /\  ( F " ( `' F " x ) )  C_  t )  ->  ( E. z  e.  Y  ( F `  z )  =  y  ->  (
y  e.  x  -> 
y  e.  t ) ) )
5329, 52sylbid 223 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  L )  /\  ( F " ( `' F " x ) )  C_  t )  ->  (
y  e.  ran  F  ->  ( y  e.  x  ->  y  e.  t ) ) )
5453com23 80 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  L )  /\  ( F " ( `' F " x ) )  C_  t )  ->  (
y  e.  x  -> 
( y  e.  ran  F  ->  y  e.  t ) ) )
5554impd 438 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  L )  /\  ( F " ( `' F " x ) )  C_  t )  ->  (
( y  e.  x  /\  y  e.  ran  F )  ->  y  e.  t ) )
5655adantrr 731 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  L )  /\  (
( F " ( `' F " x ) )  C_  t  /\  t  C_  X ) )  ->  ( ( y  e.  x  /\  y  e.  ran  F )  -> 
y  e.  t ) )
5726, 56syl5bi 225 . . . . . 6  |-  ( ( ( ph  /\  x  e.  L )  /\  (
( F " ( `' F " x ) )  C_  t  /\  t  C_  X ) )  ->  ( y  e.  ( x  i^i  ran  F )  ->  y  e.  t ) )
5857ssrdv 3424 . . . . 5  |-  ( ( ( ph  /\  x  e.  L )  /\  (
( F " ( `' F " x ) )  C_  t  /\  t  C_  X ) )  ->  ( x  i^i 
ran  F )  C_  t )
59 filss 20946 . . . . 5  |-  ( ( L  e.  ( Fil `  X )  /\  (
( x  i^i  ran  F )  e.  L  /\  t  C_  X  /\  (
x  i^i  ran  F ) 
C_  t ) )  ->  t  e.  L
)
602, 24, 25, 58, 59syl13anc 1294 . . . 4  |-  ( ( ( ph  /\  x  e.  L )  /\  (
( F " ( `' F " x ) )  C_  t  /\  t  C_  X ) )  ->  t  e.  L
)
6160exp32 616 . . 3  |-  ( (
ph  /\  x  e.  L )  ->  (
( F " ( `' F " x ) )  C_  t  ->  ( t  C_  X  ->  t  e.  L ) ) )
62 imaeq2 5170 . . . . 5  |-  ( s  =  ( `' F " x )  ->  ( F " s )  =  ( F " ( `' F " x ) ) )
6362sseq1d 3445 . . . 4  |-  ( s  =  ( `' F " x )  ->  (
( F " s
)  C_  t  <->  ( F " ( `' F "
x ) )  C_  t ) )
6463imbi1d 324 . . 3  |-  ( s  =  ( `' F " x )  ->  (
( ( F "
s )  C_  t  ->  ( t  C_  X  ->  t  e.  L ) )  <->  ( ( F
" ( `' F " x ) )  C_  t  ->  ( t  C_  X  ->  t  e.  L
) ) ) )
6561, 64syl5ibrcom 230 . 2  |-  ( (
ph  /\  x  e.  L )  ->  (
s  =  ( `' F " x )  ->  ( ( F
" s )  C_  t  ->  ( t  C_  X  ->  t  e.  L
) ) ) )
6665rexlimdva 2871 1  |-  ( ph  ->  ( E. x  e.  L  s  =  ( `' F " x )  ->  ( ( F
" s )  C_  t  ->  ( t  C_  X  ->  t  e.  L
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452    e. wcel 1904   E.wrex 2757    i^i cin 3389    C_ wss 3390   `'ccnv 4838   dom cdm 4839   ran crn 4840   "cima 4842   Fun wfun 5583    Fn wfn 5584   -->wf 5585   -onto->wfo 5587   ` cfv 5589  (class class class)co 6308   fBascfbas 19035   filGencfg 19036   Filcfil 20938    FilMap cfm 21026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-fbas 19044  df-fg 19045  df-fil 20939  df-fm 21031
This theorem is referenced by:  fmfnfmlem4  21050
  Copyright terms: Public domain W3C validator