MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmco Structured version   Unicode version

Theorem fmco 20190
Description: Composition of image filters. (Contributed by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
fmco  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  -> 
( ( X  FilMap  ( F  o.  G ) ) `  B )  =  ( ( X 
FilMap  F ) `  (
( Y  FilMap  G ) `
 B ) ) )

Proof of Theorem fmco
Dummy variables  t 
s  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl3 996 . . . . . . . . . . 11  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  ->  B  e.  ( fBas `  Z ) )
2 ssfg 20101 . . . . . . . . . . 11  |-  ( B  e.  ( fBas `  Z
)  ->  B  C_  ( Z filGen B ) )
31, 2syl 16 . . . . . . . . . 10  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  ->  B  C_  ( Z filGen B ) )
43sseld 3496 . . . . . . . . 9  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  -> 
( u  e.  B  ->  u  e.  ( Z
filGen B ) ) )
5 simpl2 995 . . . . . . . . . 10  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  ->  Y  e.  W )
6 simprr 756 . . . . . . . . . 10  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  ->  G : Z --> Y )
7 eqid 2460 . . . . . . . . . . . 12  |-  ( Z
filGen B )  =  ( Z filGen B )
87imaelfm 20180 . . . . . . . . . . 11  |-  ( ( ( Y  e.  W  /\  B  e.  ( fBas `  Z )  /\  G : Z --> Y )  /\  u  e.  ( Z filGen B ) )  ->  ( G "
u )  e.  ( ( Y  FilMap  G ) `
 B ) )
98ex 434 . . . . . . . . . 10  |-  ( ( Y  e.  W  /\  B  e.  ( fBas `  Z )  /\  G : Z --> Y )  -> 
( u  e.  ( Z filGen B )  -> 
( G " u
)  e.  ( ( Y  FilMap  G ) `  B ) ) )
105, 1, 6, 9syl3anc 1223 . . . . . . . . 9  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  -> 
( u  e.  ( Z filGen B )  -> 
( G " u
)  e.  ( ( Y  FilMap  G ) `  B ) ) )
114, 10syld 44 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  -> 
( u  e.  B  ->  ( G " u
)  e.  ( ( Y  FilMap  G ) `  B ) ) )
1211imp 429 . . . . . . 7  |-  ( ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z
) )  /\  ( F : Y --> X  /\  G : Z --> Y ) )  /\  u  e.  B )  ->  ( G " u )  e.  ( ( Y  FilMap  G ) `  B ) )
13 imaeq2 5324 . . . . . . . . . . 11  |-  ( t  =  ( G "
u )  ->  ( F " t )  =  ( F " ( G " u ) ) )
14 imaco 5503 . . . . . . . . . . 11  |-  ( ( F  o.  G )
" u )  =  ( F " ( G " u ) )
1513, 14syl6eqr 2519 . . . . . . . . . 10  |-  ( t  =  ( G "
u )  ->  ( F " t )  =  ( ( F  o.  G ) " u
) )
1615sseq1d 3524 . . . . . . . . 9  |-  ( t  =  ( G "
u )  ->  (
( F " t
)  C_  s  <->  ( ( F  o.  G ) " u )  C_  s ) )
1716rspcev 3207 . . . . . . . 8  |-  ( ( ( G " u
)  e.  ( ( Y  FilMap  G ) `  B )  /\  (
( F  o.  G
) " u ) 
C_  s )  ->  E. t  e.  (
( Y  FilMap  G ) `
 B ) ( F " t ) 
C_  s )
1817ex 434 . . . . . . 7  |-  ( ( G " u )  e.  ( ( Y 
FilMap  G ) `  B
)  ->  ( (
( F  o.  G
) " u ) 
C_  s  ->  E. t  e.  ( ( Y  FilMap  G ) `  B ) ( F " t
)  C_  s )
)
1912, 18syl 16 . . . . . 6  |-  ( ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z
) )  /\  ( F : Y --> X  /\  G : Z --> Y ) )  /\  u  e.  B )  ->  (
( ( F  o.  G ) " u
)  C_  s  ->  E. t  e.  ( ( Y  FilMap  G ) `  B ) ( F
" t )  C_  s ) )
2019rexlimdva 2948 . . . . 5  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  -> 
( E. u  e.  B  ( ( F  o.  G ) "
u )  C_  s  ->  E. t  e.  ( ( Y  FilMap  G ) `
 B ) ( F " t ) 
C_  s ) )
21 elfm 20176 . . . . . . . 8  |-  ( ( Y  e.  W  /\  B  e.  ( fBas `  Z )  /\  G : Z --> Y )  -> 
( t  e.  ( ( Y  FilMap  G ) `
 B )  <->  ( t  C_  Y  /\  E. u  e.  B  ( G " u )  C_  t
) ) )
225, 1, 6, 21syl3anc 1223 . . . . . . 7  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  -> 
( t  e.  ( ( Y  FilMap  G ) `
 B )  <->  ( t  C_  Y  /\  E. u  e.  B  ( G " u )  C_  t
) ) )
23 imass2 5363 . . . . . . . . . . . . 13  |-  ( ( G " u ) 
C_  t  ->  ( F " ( G "
u ) )  C_  ( F " t ) )
2414, 23syl5eqss 3541 . . . . . . . . . . . 12  |-  ( ( G " u ) 
C_  t  ->  (
( F  o.  G
) " u ) 
C_  ( F "
t ) )
25 sstr2 3504 . . . . . . . . . . . 12  |-  ( ( ( F  o.  G
) " u ) 
C_  ( F "
t )  ->  (
( F " t
)  C_  s  ->  ( ( F  o.  G
) " u ) 
C_  s ) )
2624, 25syl 16 . . . . . . . . . . 11  |-  ( ( G " u ) 
C_  t  ->  (
( F " t
)  C_  s  ->  ( ( F  o.  G
) " u ) 
C_  s ) )
2726com12 31 . . . . . . . . . 10  |-  ( ( F " t ) 
C_  s  ->  (
( G " u
)  C_  t  ->  ( ( F  o.  G
) " u ) 
C_  s ) )
2827reximdv 2930 . . . . . . . . 9  |-  ( ( F " t ) 
C_  s  ->  ( E. u  e.  B  ( G " u ) 
C_  t  ->  E. u  e.  B  ( ( F  o.  G ) " u )  C_  s ) )
2928com12 31 . . . . . . . 8  |-  ( E. u  e.  B  ( G " u ) 
C_  t  ->  (
( F " t
)  C_  s  ->  E. u  e.  B  ( ( F  o.  G
) " u ) 
C_  s ) )
3029adantl 466 . . . . . . 7  |-  ( ( t  C_  Y  /\  E. u  e.  B  ( G " u ) 
C_  t )  -> 
( ( F "
t )  C_  s  ->  E. u  e.  B  ( ( F  o.  G ) " u
)  C_  s )
)
3122, 30syl6bi 228 . . . . . 6  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  -> 
( t  e.  ( ( Y  FilMap  G ) `
 B )  -> 
( ( F "
t )  C_  s  ->  E. u  e.  B  ( ( F  o.  G ) " u
)  C_  s )
) )
3231rexlimdv 2946 . . . . 5  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  -> 
( E. t  e.  ( ( Y  FilMap  G ) `  B ) ( F " t
)  C_  s  ->  E. u  e.  B  ( ( F  o.  G
) " u ) 
C_  s ) )
3320, 32impbid 191 . . . 4  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  -> 
( E. u  e.  B  ( ( F  o.  G ) "
u )  C_  s  <->  E. t  e.  ( ( Y  FilMap  G ) `  B ) ( F
" t )  C_  s ) )
3433anbi2d 703 . . 3  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  -> 
( ( s  C_  X  /\  E. u  e.  B  ( ( F  o.  G ) "
u )  C_  s
)  <->  ( s  C_  X  /\  E. t  e.  ( ( Y  FilMap  G ) `  B ) ( F " t
)  C_  s )
) )
35 simpl1 994 . . . 4  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  ->  X  e.  V )
36 fco 5732 . . . . 5  |-  ( ( F : Y --> X  /\  G : Z --> Y )  ->  ( F  o.  G ) : Z --> X )
3736adantl 466 . . . 4  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  -> 
( F  o.  G
) : Z --> X )
38 elfm 20176 . . . 4  |-  ( ( X  e.  V  /\  B  e.  ( fBas `  Z )  /\  ( F  o.  G ) : Z --> X )  -> 
( s  e.  ( ( X  FilMap  ( F  o.  G ) ) `
 B )  <->  ( s  C_  X  /\  E. u  e.  B  ( ( F  o.  G ) " u )  C_  s ) ) )
3935, 1, 37, 38syl3anc 1223 . . 3  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  -> 
( s  e.  ( ( X  FilMap  ( F  o.  G ) ) `
 B )  <->  ( s  C_  X  /\  E. u  e.  B  ( ( F  o.  G ) " u )  C_  s ) ) )
40 fmfil 20173 . . . . . 6  |-  ( ( Y  e.  W  /\  B  e.  ( fBas `  Z )  /\  G : Z --> Y )  -> 
( ( Y  FilMap  G ) `  B )  e.  ( Fil `  Y
) )
415, 1, 6, 40syl3anc 1223 . . . . 5  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  -> 
( ( Y  FilMap  G ) `  B )  e.  ( Fil `  Y
) )
42 filfbas 20077 . . . . 5  |-  ( ( ( Y  FilMap  G ) `
 B )  e.  ( Fil `  Y
)  ->  ( ( Y  FilMap  G ) `  B )  e.  (
fBas `  Y )
)
4341, 42syl 16 . . . 4  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  -> 
( ( Y  FilMap  G ) `  B )  e.  ( fBas `  Y
) )
44 simprl 755 . . . 4  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  ->  F : Y --> X )
45 elfm 20176 . . . 4  |-  ( ( X  e.  V  /\  ( ( Y  FilMap  G ) `  B )  e.  ( fBas `  Y
)  /\  F : Y
--> X )  ->  (
s  e.  ( ( X  FilMap  F ) `  ( ( Y  FilMap  G ) `  B ) )  <->  ( s  C_  X  /\  E. t  e.  ( ( Y  FilMap  G ) `  B ) ( F " t
)  C_  s )
) )
4635, 43, 44, 45syl3anc 1223 . . 3  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  -> 
( s  e.  ( ( X  FilMap  F ) `
 ( ( Y 
FilMap  G ) `  B
) )  <->  ( s  C_  X  /\  E. t  e.  ( ( Y  FilMap  G ) `  B ) ( F " t
)  C_  s )
) )
4734, 39, 463bitr4d 285 . 2  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  -> 
( s  e.  ( ( X  FilMap  ( F  o.  G ) ) `
 B )  <->  s  e.  ( ( X  FilMap  F ) `  ( ( Y  FilMap  G ) `  B ) ) ) )
4847eqrdv 2457 1  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  -> 
( ( X  FilMap  ( F  o.  G ) ) `  B )  =  ( ( X 
FilMap  F ) `  (
( Y  FilMap  G ) `
 B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762   E.wrex 2808    C_ wss 3469   "cima 4995    o. ccom 4996   -->wf 5575   ` cfv 5579  (class class class)co 6275   fBascfbas 18170   filGencfg 18171   Filcfil 20074    FilMap cfm 20162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-id 4788  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-fbas 18180  df-fg 18181  df-fil 20075  df-fm 20167
This theorem is referenced by:  ufldom  20191  flfcnp  20233
  Copyright terms: Public domain W3C validator