MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmco Structured version   Unicode version

Theorem fmco 19532
Description: Composition of image filters. (Contributed by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
fmco  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  -> 
( ( X  FilMap  ( F  o.  G ) ) `  B )  =  ( ( X 
FilMap  F ) `  (
( Y  FilMap  G ) `
 B ) ) )

Proof of Theorem fmco
Dummy variables  t 
s  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl3 993 . . . . . . . . . . 11  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  ->  B  e.  ( fBas `  Z ) )
2 ssfg 19443 . . . . . . . . . . 11  |-  ( B  e.  ( fBas `  Z
)  ->  B  C_  ( Z filGen B ) )
31, 2syl 16 . . . . . . . . . 10  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  ->  B  C_  ( Z filGen B ) )
43sseld 3353 . . . . . . . . 9  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  -> 
( u  e.  B  ->  u  e.  ( Z
filGen B ) ) )
5 simpl2 992 . . . . . . . . . 10  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  ->  Y  e.  W )
6 simprr 756 . . . . . . . . . 10  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  ->  G : Z --> Y )
7 eqid 2441 . . . . . . . . . . . 12  |-  ( Z
filGen B )  =  ( Z filGen B )
87imaelfm 19522 . . . . . . . . . . 11  |-  ( ( ( Y  e.  W  /\  B  e.  ( fBas `  Z )  /\  G : Z --> Y )  /\  u  e.  ( Z filGen B ) )  ->  ( G "
u )  e.  ( ( Y  FilMap  G ) `
 B ) )
98ex 434 . . . . . . . . . 10  |-  ( ( Y  e.  W  /\  B  e.  ( fBas `  Z )  /\  G : Z --> Y )  -> 
( u  e.  ( Z filGen B )  -> 
( G " u
)  e.  ( ( Y  FilMap  G ) `  B ) ) )
105, 1, 6, 9syl3anc 1218 . . . . . . . . 9  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  -> 
( u  e.  ( Z filGen B )  -> 
( G " u
)  e.  ( ( Y  FilMap  G ) `  B ) ) )
114, 10syld 44 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  -> 
( u  e.  B  ->  ( G " u
)  e.  ( ( Y  FilMap  G ) `  B ) ) )
1211imp 429 . . . . . . 7  |-  ( ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z
) )  /\  ( F : Y --> X  /\  G : Z --> Y ) )  /\  u  e.  B )  ->  ( G " u )  e.  ( ( Y  FilMap  G ) `  B ) )
13 imaeq2 5163 . . . . . . . . . . 11  |-  ( t  =  ( G "
u )  ->  ( F " t )  =  ( F " ( G " u ) ) )
14 imaco 5341 . . . . . . . . . . 11  |-  ( ( F  o.  G )
" u )  =  ( F " ( G " u ) )
1513, 14syl6eqr 2491 . . . . . . . . . 10  |-  ( t  =  ( G "
u )  ->  ( F " t )  =  ( ( F  o.  G ) " u
) )
1615sseq1d 3381 . . . . . . . . 9  |-  ( t  =  ( G "
u )  ->  (
( F " t
)  C_  s  <->  ( ( F  o.  G ) " u )  C_  s ) )
1716rspcev 3071 . . . . . . . 8  |-  ( ( ( G " u
)  e.  ( ( Y  FilMap  G ) `  B )  /\  (
( F  o.  G
) " u ) 
C_  s )  ->  E. t  e.  (
( Y  FilMap  G ) `
 B ) ( F " t ) 
C_  s )
1817ex 434 . . . . . . 7  |-  ( ( G " u )  e.  ( ( Y 
FilMap  G ) `  B
)  ->  ( (
( F  o.  G
) " u ) 
C_  s  ->  E. t  e.  ( ( Y  FilMap  G ) `  B ) ( F " t
)  C_  s )
)
1912, 18syl 16 . . . . . 6  |-  ( ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z
) )  /\  ( F : Y --> X  /\  G : Z --> Y ) )  /\  u  e.  B )  ->  (
( ( F  o.  G ) " u
)  C_  s  ->  E. t  e.  ( ( Y  FilMap  G ) `  B ) ( F
" t )  C_  s ) )
2019rexlimdva 2839 . . . . 5  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  -> 
( E. u  e.  B  ( ( F  o.  G ) "
u )  C_  s  ->  E. t  e.  ( ( Y  FilMap  G ) `
 B ) ( F " t ) 
C_  s ) )
21 elfm 19518 . . . . . . . 8  |-  ( ( Y  e.  W  /\  B  e.  ( fBas `  Z )  /\  G : Z --> Y )  -> 
( t  e.  ( ( Y  FilMap  G ) `
 B )  <->  ( t  C_  Y  /\  E. u  e.  B  ( G " u )  C_  t
) ) )
225, 1, 6, 21syl3anc 1218 . . . . . . 7  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  -> 
( t  e.  ( ( Y  FilMap  G ) `
 B )  <->  ( t  C_  Y  /\  E. u  e.  B  ( G " u )  C_  t
) ) )
23 imass2 5202 . . . . . . . . . . . . 13  |-  ( ( G " u ) 
C_  t  ->  ( F " ( G "
u ) )  C_  ( F " t ) )
2414, 23syl5eqss 3398 . . . . . . . . . . . 12  |-  ( ( G " u ) 
C_  t  ->  (
( F  o.  G
) " u ) 
C_  ( F "
t ) )
25 sstr2 3361 . . . . . . . . . . . 12  |-  ( ( ( F  o.  G
) " u ) 
C_  ( F "
t )  ->  (
( F " t
)  C_  s  ->  ( ( F  o.  G
) " u ) 
C_  s ) )
2624, 25syl 16 . . . . . . . . . . 11  |-  ( ( G " u ) 
C_  t  ->  (
( F " t
)  C_  s  ->  ( ( F  o.  G
) " u ) 
C_  s ) )
2726com12 31 . . . . . . . . . 10  |-  ( ( F " t ) 
C_  s  ->  (
( G " u
)  C_  t  ->  ( ( F  o.  G
) " u ) 
C_  s ) )
2827reximdv 2825 . . . . . . . . 9  |-  ( ( F " t ) 
C_  s  ->  ( E. u  e.  B  ( G " u ) 
C_  t  ->  E. u  e.  B  ( ( F  o.  G ) " u )  C_  s ) )
2928com12 31 . . . . . . . 8  |-  ( E. u  e.  B  ( G " u ) 
C_  t  ->  (
( F " t
)  C_  s  ->  E. u  e.  B  ( ( F  o.  G
) " u ) 
C_  s ) )
3029adantl 466 . . . . . . 7  |-  ( ( t  C_  Y  /\  E. u  e.  B  ( G " u ) 
C_  t )  -> 
( ( F "
t )  C_  s  ->  E. u  e.  B  ( ( F  o.  G ) " u
)  C_  s )
)
3122, 30syl6bi 228 . . . . . 6  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  -> 
( t  e.  ( ( Y  FilMap  G ) `
 B )  -> 
( ( F "
t )  C_  s  ->  E. u  e.  B  ( ( F  o.  G ) " u
)  C_  s )
) )
3231rexlimdv 2838 . . . . 5  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  -> 
( E. t  e.  ( ( Y  FilMap  G ) `  B ) ( F " t
)  C_  s  ->  E. u  e.  B  ( ( F  o.  G
) " u ) 
C_  s ) )
3320, 32impbid 191 . . . 4  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  -> 
( E. u  e.  B  ( ( F  o.  G ) "
u )  C_  s  <->  E. t  e.  ( ( Y  FilMap  G ) `  B ) ( F
" t )  C_  s ) )
3433anbi2d 703 . . 3  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  -> 
( ( s  C_  X  /\  E. u  e.  B  ( ( F  o.  G ) "
u )  C_  s
)  <->  ( s  C_  X  /\  E. t  e.  ( ( Y  FilMap  G ) `  B ) ( F " t
)  C_  s )
) )
35 simpl1 991 . . . 4  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  ->  X  e.  V )
36 fco 5566 . . . . 5  |-  ( ( F : Y --> X  /\  G : Z --> Y )  ->  ( F  o.  G ) : Z --> X )
3736adantl 466 . . . 4  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  -> 
( F  o.  G
) : Z --> X )
38 elfm 19518 . . . 4  |-  ( ( X  e.  V  /\  B  e.  ( fBas `  Z )  /\  ( F  o.  G ) : Z --> X )  -> 
( s  e.  ( ( X  FilMap  ( F  o.  G ) ) `
 B )  <->  ( s  C_  X  /\  E. u  e.  B  ( ( F  o.  G ) " u )  C_  s ) ) )
3935, 1, 37, 38syl3anc 1218 . . 3  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  -> 
( s  e.  ( ( X  FilMap  ( F  o.  G ) ) `
 B )  <->  ( s  C_  X  /\  E. u  e.  B  ( ( F  o.  G ) " u )  C_  s ) ) )
40 fmfil 19515 . . . . . 6  |-  ( ( Y  e.  W  /\  B  e.  ( fBas `  Z )  /\  G : Z --> Y )  -> 
( ( Y  FilMap  G ) `  B )  e.  ( Fil `  Y
) )
415, 1, 6, 40syl3anc 1218 . . . . 5  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  -> 
( ( Y  FilMap  G ) `  B )  e.  ( Fil `  Y
) )
42 filfbas 19419 . . . . 5  |-  ( ( ( Y  FilMap  G ) `
 B )  e.  ( Fil `  Y
)  ->  ( ( Y  FilMap  G ) `  B )  e.  (
fBas `  Y )
)
4341, 42syl 16 . . . 4  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  -> 
( ( Y  FilMap  G ) `  B )  e.  ( fBas `  Y
) )
44 simprl 755 . . . 4  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  ->  F : Y --> X )
45 elfm 19518 . . . 4  |-  ( ( X  e.  V  /\  ( ( Y  FilMap  G ) `  B )  e.  ( fBas `  Y
)  /\  F : Y
--> X )  ->  (
s  e.  ( ( X  FilMap  F ) `  ( ( Y  FilMap  G ) `  B ) )  <->  ( s  C_  X  /\  E. t  e.  ( ( Y  FilMap  G ) `  B ) ( F " t
)  C_  s )
) )
4635, 43, 44, 45syl3anc 1218 . . 3  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  -> 
( s  e.  ( ( X  FilMap  F ) `
 ( ( Y 
FilMap  G ) `  B
) )  <->  ( s  C_  X  /\  E. t  e.  ( ( Y  FilMap  G ) `  B ) ( F " t
)  C_  s )
) )
4734, 39, 463bitr4d 285 . 2  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  -> 
( s  e.  ( ( X  FilMap  ( F  o.  G ) ) `
 B )  <->  s  e.  ( ( X  FilMap  F ) `  ( ( Y  FilMap  G ) `  B ) ) ) )
4847eqrdv 2439 1  |-  ( ( ( X  e.  V  /\  Y  e.  W  /\  B  e.  ( fBas `  Z ) )  /\  ( F : Y
--> X  /\  G : Z
--> Y ) )  -> 
( ( X  FilMap  ( F  o.  G ) ) `  B )  =  ( ( X 
FilMap  F ) `  (
( Y  FilMap  G ) `
 B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   E.wrex 2714    C_ wss 3326   "cima 4841    o. ccom 4842   -->wf 5412   ` cfv 5416  (class class class)co 6089   fBascfbas 17802   filGencfg 17803   Filcfil 19416    FilMap cfm 19504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-rep 4401  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-op 3882  df-uni 4090  df-iun 4171  df-br 4291  df-opab 4349  df-mpt 4350  df-id 4634  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-ov 6092  df-oprab 6093  df-mpt2 6094  df-fbas 17812  df-fg 17813  df-fil 19417  df-fm 19509
This theorem is referenced by:  ufldom  19533  flfcnp  19575
  Copyright terms: Public domain W3C validator