MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimsncls Structured version   Unicode version

Theorem flimsncls 20355
Description: If  A is a limit point of the filter  F, then all the points which specialize  A (in the specialization preorder) are also limit points. Thus, the set of limit points is a union of closed sets (although this is only nontrivial for non-T1 spaces). (Contributed by Mario Carneiro, 20-Sep-2015.)
Assertion
Ref Expression
flimsncls  |-  ( A  e.  ( J  fLim  F )  ->  ( ( cls `  J ) `  { A } )  C_  ( J  fLim  F ) )

Proof of Theorem flimsncls
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 flimtop 20334 . . . . . 6  |-  ( A  e.  ( J  fLim  F )  ->  J  e.  Top )
2 eqid 2467 . . . . . . . 8  |-  U. J  =  U. J
32flimelbas 20337 . . . . . . 7  |-  ( A  e.  ( J  fLim  F )  ->  A  e.  U. J )
43snssd 4178 . . . . . 6  |-  ( A  e.  ( J  fLim  F )  ->  { A }  C_  U. J )
52clsss3 19428 . . . . . 6  |-  ( ( J  e.  Top  /\  { A }  C_  U. J
)  ->  ( ( cls `  J ) `  { A } )  C_  U. J )
61, 4, 5syl2anc 661 . . . . 5  |-  ( A  e.  ( J  fLim  F )  ->  ( ( cls `  J ) `  { A } )  C_  U. J )
76sselda 3509 . . . 4  |-  ( ( A  e.  ( J 
fLim  F )  /\  x  e.  ( ( cls `  J
) `  { A } ) )  ->  x  e.  U. J )
8 simpll 753 . . . . . . 7  |-  ( ( ( A  e.  ( J  fLim  F )  /\  x  e.  (
( cls `  J
) `  { A } ) )  /\  ( y  e.  J  /\  x  e.  y
) )  ->  A  e.  ( J  fLim  F
) )
98, 1syl 16 . . . . . . . 8  |-  ( ( ( A  e.  ( J  fLim  F )  /\  x  e.  (
( cls `  J
) `  { A } ) )  /\  ( y  e.  J  /\  x  e.  y
) )  ->  J  e.  Top )
10 simprl 755 . . . . . . . 8  |-  ( ( ( A  e.  ( J  fLim  F )  /\  x  e.  (
( cls `  J
) `  { A } ) )  /\  ( y  e.  J  /\  x  e.  y
) )  ->  y  e.  J )
111adantr 465 . . . . . . . . . 10  |-  ( ( A  e.  ( J 
fLim  F )  /\  x  e.  ( ( cls `  J
) `  { A } ) )  ->  J  e.  Top )
124adantr 465 . . . . . . . . . 10  |-  ( ( A  e.  ( J 
fLim  F )  /\  x  e.  ( ( cls `  J
) `  { A } ) )  ->  { A }  C_  U. J
)
13 simpr 461 . . . . . . . . . 10  |-  ( ( A  e.  ( J 
fLim  F )  /\  x  e.  ( ( cls `  J
) `  { A } ) )  ->  x  e.  ( ( cls `  J ) `  { A } ) )
1411, 12, 133jca 1176 . . . . . . . . 9  |-  ( ( A  e.  ( J 
fLim  F )  /\  x  e.  ( ( cls `  J
) `  { A } ) )  -> 
( J  e.  Top  /\ 
{ A }  C_  U. J  /\  x  e.  ( ( cls `  J
) `  { A } ) ) )
152clsndisj 19444 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\ 
{ A }  C_  U. J  /\  x  e.  ( ( cls `  J
) `  { A } ) )  /\  ( y  e.  J  /\  x  e.  y
) )  ->  (
y  i^i  { A } )  =/=  (/) )
16 disjsn 4094 . . . . . . . . . . 11  |-  ( ( y  i^i  { A } )  =  (/)  <->  -.  A  e.  y )
1716necon2abii 2733 . . . . . . . . . 10  |-  ( A  e.  y  <->  ( y  i^i  { A } )  =/=  (/) )
1815, 17sylibr 212 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\ 
{ A }  C_  U. J  /\  x  e.  ( ( cls `  J
) `  { A } ) )  /\  ( y  e.  J  /\  x  e.  y
) )  ->  A  e.  y )
1914, 18sylan 471 . . . . . . . 8  |-  ( ( ( A  e.  ( J  fLim  F )  /\  x  e.  (
( cls `  J
) `  { A } ) )  /\  ( y  e.  J  /\  x  e.  y
) )  ->  A  e.  y )
20 opnneip 19488 . . . . . . . 8  |-  ( ( J  e.  Top  /\  y  e.  J  /\  A  e.  y )  ->  y  e.  ( ( nei `  J ) `
 { A }
) )
219, 10, 19, 20syl3anc 1228 . . . . . . 7  |-  ( ( ( A  e.  ( J  fLim  F )  /\  x  e.  (
( cls `  J
) `  { A } ) )  /\  ( y  e.  J  /\  x  e.  y
) )  ->  y  e.  ( ( nei `  J
) `  { A } ) )
22 flimnei 20336 . . . . . . 7  |-  ( ( A  e.  ( J 
fLim  F )  /\  y  e.  ( ( nei `  J
) `  { A } ) )  -> 
y  e.  F )
238, 21, 22syl2anc 661 . . . . . 6  |-  ( ( ( A  e.  ( J  fLim  F )  /\  x  e.  (
( cls `  J
) `  { A } ) )  /\  ( y  e.  J  /\  x  e.  y
) )  ->  y  e.  F )
2423expr 615 . . . . 5  |-  ( ( ( A  e.  ( J  fLim  F )  /\  x  e.  (
( cls `  J
) `  { A } ) )  /\  y  e.  J )  ->  ( x  e.  y  ->  y  e.  F
) )
2524ralrimiva 2881 . . . 4  |-  ( ( A  e.  ( J 
fLim  F )  /\  x  e.  ( ( cls `  J
) `  { A } ) )  ->  A. y  e.  J  ( x  e.  y  ->  y  e.  F ) )
262toptopon 19303 . . . . . 6  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
2711, 26sylib 196 . . . . 5  |-  ( ( A  e.  ( J 
fLim  F )  /\  x  e.  ( ( cls `  J
) `  { A } ) )  ->  J  e.  (TopOn `  U. J ) )
282flimfil 20338 . . . . . 6  |-  ( A  e.  ( J  fLim  F )  ->  F  e.  ( Fil `  U. J
) )
2928adantr 465 . . . . 5  |-  ( ( A  e.  ( J 
fLim  F )  /\  x  e.  ( ( cls `  J
) `  { A } ) )  ->  F  e.  ( Fil ` 
U. J ) )
30 flimopn 20344 . . . . 5  |-  ( ( J  e.  (TopOn `  U. J )  /\  F  e.  ( Fil `  U. J ) )  -> 
( x  e.  ( J  fLim  F )  <->  ( x  e.  U. J  /\  A. y  e.  J  ( x  e.  y  ->  y  e.  F ) ) ) )
3127, 29, 30syl2anc 661 . . . 4  |-  ( ( A  e.  ( J 
fLim  F )  /\  x  e.  ( ( cls `  J
) `  { A } ) )  -> 
( x  e.  ( J  fLim  F )  <->  ( x  e.  U. J  /\  A. y  e.  J  ( x  e.  y  ->  y  e.  F ) ) ) )
327, 25, 31mpbir2and 920 . . 3  |-  ( ( A  e.  ( J 
fLim  F )  /\  x  e.  ( ( cls `  J
) `  { A } ) )  ->  x  e.  ( J  fLim  F ) )
3332ex 434 . 2  |-  ( A  e.  ( J  fLim  F )  ->  ( x  e.  ( ( cls `  J
) `  { A } )  ->  x  e.  ( J  fLim  F
) ) )
3433ssrdv 3515 1  |-  ( A  e.  ( J  fLim  F )  ->  ( ( cls `  J ) `  { A } )  C_  ( J  fLim  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    e. wcel 1767    =/= wne 2662   A.wral 2817    i^i cin 3480    C_ wss 3481   (/)c0 3790   {csn 4033   U.cuni 4251   ` cfv 5594  (class class class)co 6295   Topctop 19263  TopOnctopon 19264   clsccl 19387   neicnei 19466   Filcfil 20214    fLim cflim 20303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-iin 4334  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-fbas 18286  df-top 19268  df-topon 19271  df-cld 19388  df-ntr 19389  df-cls 19390  df-nei 19467  df-fil 20215  df-flim 20308
This theorem is referenced by:  tsmscls  20504
  Copyright terms: Public domain W3C validator