MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimsncls Structured version   Visualization version   Unicode version

Theorem flimsncls 21001
Description: If  A is a limit point of the filter  F, then all the points which specialize  A (in the specialization preorder) are also limit points. Thus, the set of limit points is a union of closed sets (although this is only nontrivial for non-T1 spaces). (Contributed by Mario Carneiro, 20-Sep-2015.)
Assertion
Ref Expression
flimsncls  |-  ( A  e.  ( J  fLim  F )  ->  ( ( cls `  J ) `  { A } )  C_  ( J  fLim  F ) )

Proof of Theorem flimsncls
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 flimtop 20980 . . . . . 6  |-  ( A  e.  ( J  fLim  F )  ->  J  e.  Top )
2 eqid 2451 . . . . . . . 8  |-  U. J  =  U. J
32flimelbas 20983 . . . . . . 7  |-  ( A  e.  ( J  fLim  F )  ->  A  e.  U. J )
43snssd 4117 . . . . . 6  |-  ( A  e.  ( J  fLim  F )  ->  { A }  C_  U. J )
52clsss3 20074 . . . . . 6  |-  ( ( J  e.  Top  /\  { A }  C_  U. J
)  ->  ( ( cls `  J ) `  { A } )  C_  U. J )
61, 4, 5syl2anc 667 . . . . 5  |-  ( A  e.  ( J  fLim  F )  ->  ( ( cls `  J ) `  { A } )  C_  U. J )
76sselda 3432 . . . 4  |-  ( ( A  e.  ( J 
fLim  F )  /\  x  e.  ( ( cls `  J
) `  { A } ) )  ->  x  e.  U. J )
8 simpll 760 . . . . . . 7  |-  ( ( ( A  e.  ( J  fLim  F )  /\  x  e.  (
( cls `  J
) `  { A } ) )  /\  ( y  e.  J  /\  x  e.  y
) )  ->  A  e.  ( J  fLim  F
) )
98, 1syl 17 . . . . . . . 8  |-  ( ( ( A  e.  ( J  fLim  F )  /\  x  e.  (
( cls `  J
) `  { A } ) )  /\  ( y  e.  J  /\  x  e.  y
) )  ->  J  e.  Top )
10 simprl 764 . . . . . . . 8  |-  ( ( ( A  e.  ( J  fLim  F )  /\  x  e.  (
( cls `  J
) `  { A } ) )  /\  ( y  e.  J  /\  x  e.  y
) )  ->  y  e.  J )
111adantr 467 . . . . . . . . . 10  |-  ( ( A  e.  ( J 
fLim  F )  /\  x  e.  ( ( cls `  J
) `  { A } ) )  ->  J  e.  Top )
124adantr 467 . . . . . . . . . 10  |-  ( ( A  e.  ( J 
fLim  F )  /\  x  e.  ( ( cls `  J
) `  { A } ) )  ->  { A }  C_  U. J
)
13 simpr 463 . . . . . . . . . 10  |-  ( ( A  e.  ( J 
fLim  F )  /\  x  e.  ( ( cls `  J
) `  { A } ) )  ->  x  e.  ( ( cls `  J ) `  { A } ) )
1411, 12, 133jca 1188 . . . . . . . . 9  |-  ( ( A  e.  ( J 
fLim  F )  /\  x  e.  ( ( cls `  J
) `  { A } ) )  -> 
( J  e.  Top  /\ 
{ A }  C_  U. J  /\  x  e.  ( ( cls `  J
) `  { A } ) ) )
152clsndisj 20091 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\ 
{ A }  C_  U. J  /\  x  e.  ( ( cls `  J
) `  { A } ) )  /\  ( y  e.  J  /\  x  e.  y
) )  ->  (
y  i^i  { A } )  =/=  (/) )
16 disjsn 4032 . . . . . . . . . . 11  |-  ( ( y  i^i  { A } )  =  (/)  <->  -.  A  e.  y )
1716necon2abii 2674 . . . . . . . . . 10  |-  ( A  e.  y  <->  ( y  i^i  { A } )  =/=  (/) )
1815, 17sylibr 216 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\ 
{ A }  C_  U. J  /\  x  e.  ( ( cls `  J
) `  { A } ) )  /\  ( y  e.  J  /\  x  e.  y
) )  ->  A  e.  y )
1914, 18sylan 474 . . . . . . . 8  |-  ( ( ( A  e.  ( J  fLim  F )  /\  x  e.  (
( cls `  J
) `  { A } ) )  /\  ( y  e.  J  /\  x  e.  y
) )  ->  A  e.  y )
20 opnneip 20135 . . . . . . . 8  |-  ( ( J  e.  Top  /\  y  e.  J  /\  A  e.  y )  ->  y  e.  ( ( nei `  J ) `
 { A }
) )
219, 10, 19, 20syl3anc 1268 . . . . . . 7  |-  ( ( ( A  e.  ( J  fLim  F )  /\  x  e.  (
( cls `  J
) `  { A } ) )  /\  ( y  e.  J  /\  x  e.  y
) )  ->  y  e.  ( ( nei `  J
) `  { A } ) )
22 flimnei 20982 . . . . . . 7  |-  ( ( A  e.  ( J 
fLim  F )  /\  y  e.  ( ( nei `  J
) `  { A } ) )  -> 
y  e.  F )
238, 21, 22syl2anc 667 . . . . . 6  |-  ( ( ( A  e.  ( J  fLim  F )  /\  x  e.  (
( cls `  J
) `  { A } ) )  /\  ( y  e.  J  /\  x  e.  y
) )  ->  y  e.  F )
2423expr 620 . . . . 5  |-  ( ( ( A  e.  ( J  fLim  F )  /\  x  e.  (
( cls `  J
) `  { A } ) )  /\  y  e.  J )  ->  ( x  e.  y  ->  y  e.  F
) )
2524ralrimiva 2802 . . . 4  |-  ( ( A  e.  ( J 
fLim  F )  /\  x  e.  ( ( cls `  J
) `  { A } ) )  ->  A. y  e.  J  ( x  e.  y  ->  y  e.  F ) )
262toptopon 19948 . . . . . 6  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
2711, 26sylib 200 . . . . 5  |-  ( ( A  e.  ( J 
fLim  F )  /\  x  e.  ( ( cls `  J
) `  { A } ) )  ->  J  e.  (TopOn `  U. J ) )
282flimfil 20984 . . . . . 6  |-  ( A  e.  ( J  fLim  F )  ->  F  e.  ( Fil `  U. J
) )
2928adantr 467 . . . . 5  |-  ( ( A  e.  ( J 
fLim  F )  /\  x  e.  ( ( cls `  J
) `  { A } ) )  ->  F  e.  ( Fil ` 
U. J ) )
30 flimopn 20990 . . . . 5  |-  ( ( J  e.  (TopOn `  U. J )  /\  F  e.  ( Fil `  U. J ) )  -> 
( x  e.  ( J  fLim  F )  <->  ( x  e.  U. J  /\  A. y  e.  J  ( x  e.  y  ->  y  e.  F ) ) ) )
3127, 29, 30syl2anc 667 . . . 4  |-  ( ( A  e.  ( J 
fLim  F )  /\  x  e.  ( ( cls `  J
) `  { A } ) )  -> 
( x  e.  ( J  fLim  F )  <->  ( x  e.  U. J  /\  A. y  e.  J  ( x  e.  y  ->  y  e.  F ) ) ) )
327, 25, 31mpbir2and 933 . . 3  |-  ( ( A  e.  ( J 
fLim  F )  /\  x  e.  ( ( cls `  J
) `  { A } ) )  ->  x  e.  ( J  fLim  F ) )
3332ex 436 . 2  |-  ( A  e.  ( J  fLim  F )  ->  ( x  e.  ( ( cls `  J
) `  { A } )  ->  x  e.  ( J  fLim  F
) ) )
3433ssrdv 3438 1  |-  ( A  e.  ( J  fLim  F )  ->  ( ( cls `  J ) `  { A } )  C_  ( J  fLim  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 985    e. wcel 1887    =/= wne 2622   A.wral 2737    i^i cin 3403    C_ wss 3404   (/)c0 3731   {csn 3968   U.cuni 4198   ` cfv 5582  (class class class)co 6290   Topctop 19917  TopOnctopon 19918   clsccl 20033   neicnei 20113   Filcfil 20860    fLim cflim 20949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-iin 4281  df-br 4403  df-opab 4462  df-mpt 4463  df-id 4749  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-fbas 18967  df-top 19921  df-topon 19923  df-cld 20034  df-ntr 20035  df-cls 20036  df-nei 20114  df-fil 20861  df-flim 20954
This theorem is referenced by:  tsmscls  21152
  Copyright terms: Public domain W3C validator