MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimrest Structured version   Unicode version

Theorem flimrest 20247
Description: The set of limit points in a restricted topological space. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
flimrest  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  (
( Jt  Y )  fLim  ( Ft  Y ) )  =  ( ( J  fLim  F )  i^i  Y ) )

Proof of Theorem flimrest
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 996 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  J  e.  (TopOn `  X )
)
2 filelss 20116 . . . . . . 7  |-  ( ( F  e.  ( Fil `  X )  /\  Y  e.  F )  ->  Y  C_  X )
323adant1 1014 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  Y  C_  X )
4 resttopon 19456 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  Y  C_  X )  ->  ( Jt  Y )  e.  (TopOn `  Y ) )
51, 3, 4syl2anc 661 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  ( Jt  Y )  e.  (TopOn `  Y ) )
6 filfbas 20112 . . . . . . . 8  |-  ( F  e.  ( Fil `  X
)  ->  F  e.  ( fBas `  X )
)
763ad2ant2 1018 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  F  e.  ( fBas `  X
) )
8 simp3 998 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  Y  e.  F )
9 fbncp 20103 . . . . . . 7  |-  ( ( F  e.  ( fBas `  X )  /\  Y  e.  F )  ->  -.  ( X  \  Y )  e.  F )
107, 8, 9syl2anc 661 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  -.  ( X  \  Y )  e.  F )
11 simp2 997 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  F  e.  ( Fil `  X
) )
12 trfil3 20152 . . . . . . 7  |-  ( ( F  e.  ( Fil `  X )  /\  Y  C_  X )  ->  (
( Ft  Y )  e.  ( Fil `  Y )  <->  -.  ( X  \  Y
)  e.  F ) )
1311, 3, 12syl2anc 661 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  (
( Ft  Y )  e.  ( Fil `  Y )  <->  -.  ( X  \  Y
)  e.  F ) )
1410, 13mpbird 232 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  ( Ft  Y )  e.  ( Fil `  Y ) )
15 flimopn 20239 . . . . 5  |-  ( ( ( Jt  Y )  e.  (TopOn `  Y )  /\  ( Ft  Y )  e.  ( Fil `  Y ) )  ->  ( x  e.  ( ( Jt  Y ) 
fLim  ( Ft  Y ) )  <->  ( x  e.  Y  /\  A. y  e.  ( Jt  Y ) ( x  e.  y  ->  y  e.  ( Ft  Y ) ) ) ) )
165, 14, 15syl2anc 661 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  (
x  e.  ( ( Jt  Y )  fLim  ( Ft  Y ) )  <->  ( x  e.  Y  /\  A. y  e.  ( Jt  Y ) ( x  e.  y  ->  y  e.  ( Ft  Y ) ) ) ) )
17 simpll2 1036 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  z  e.  J )  ->  F  e.  ( Fil `  X
) )
18 simpll3 1037 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  z  e.  J )  ->  Y  e.  F )
19 elrestr 14684 . . . . . . . . . . 11  |-  ( ( F  e.  ( Fil `  X )  /\  Y  e.  F  /\  z  e.  F )  ->  (
z  i^i  Y )  e.  ( Ft  Y ) )
20193expia 1198 . . . . . . . . . 10  |-  ( ( F  e.  ( Fil `  X )  /\  Y  e.  F )  ->  (
z  e.  F  -> 
( z  i^i  Y
)  e.  ( Ft  Y ) ) )
2117, 18, 20syl2anc 661 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  z  e.  J )  ->  (
z  e.  F  -> 
( z  i^i  Y
)  e.  ( Ft  Y ) ) )
22 trfilss 20153 . . . . . . . . . . . 12  |-  ( ( F  e.  ( Fil `  X )  /\  Y  e.  F )  ->  ( Ft  Y )  C_  F
)
2317, 18, 22syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  z  e.  J )  ->  ( Ft  Y )  C_  F
)
2423sseld 3503 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  z  e.  J )  ->  (
( z  i^i  Y
)  e.  ( Ft  Y )  ->  ( z  i^i  Y )  e.  F
) )
25 inss1 3718 . . . . . . . . . . . 12  |-  ( z  i^i  Y )  C_  z
2625a1i 11 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  z  e.  J )  ->  (
z  i^i  Y )  C_  z )
27 simpl1 999 . . . . . . . . . . . 12  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  J  e.  (TopOn `  X )
)
28 toponss 19225 . . . . . . . . . . . 12  |-  ( ( J  e.  (TopOn `  X )  /\  z  e.  J )  ->  z  C_  X )
2927, 28sylan 471 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  z  e.  J )  ->  z  C_  X )
30 filss 20117 . . . . . . . . . . . . 13  |-  ( ( F  e.  ( Fil `  X )  /\  (
( z  i^i  Y
)  e.  F  /\  z  C_  X  /\  (
z  i^i  Y )  C_  z ) )  -> 
z  e.  F )
31303exp2 1214 . . . . . . . . . . . 12  |-  ( F  e.  ( Fil `  X
)  ->  ( (
z  i^i  Y )  e.  F  ->  ( z 
C_  X  ->  (
( z  i^i  Y
)  C_  z  ->  z  e.  F ) ) ) )
3231com24 87 . . . . . . . . . . 11  |-  ( F  e.  ( Fil `  X
)  ->  ( (
z  i^i  Y )  C_  z  ->  ( z  C_  X  ->  ( (
z  i^i  Y )  e.  F  ->  z  e.  F ) ) ) )
3317, 26, 29, 32syl3c 61 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  z  e.  J )  ->  (
( z  i^i  Y
)  e.  F  -> 
z  e.  F ) )
3424, 33syld 44 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  z  e.  J )  ->  (
( z  i^i  Y
)  e.  ( Ft  Y )  ->  z  e.  F ) )
3521, 34impbid 191 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  z  e.  J )  ->  (
z  e.  F  <->  ( z  i^i  Y )  e.  ( Ft  Y ) ) )
3635imbi2d 316 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  z  e.  J )  ->  (
( x  e.  z  ->  z  e.  F
)  <->  ( x  e.  z  ->  ( z  i^i  Y )  e.  ( Ft  Y ) ) ) )
3736ralbidva 2900 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  ( A. z  e.  J  ( x  e.  z  ->  z  e.  F )  <->  A. z  e.  J  ( x  e.  z  ->  ( z  i^i  Y
)  e.  ( Ft  Y ) ) ) )
38 simpl2 1000 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  F  e.  ( Fil `  X
) )
393sselda 3504 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  x  e.  X )
40 flimopn 20239 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  (
x  e.  ( J 
fLim  F )  <->  ( x  e.  X  /\  A. z  e.  J  ( x  e.  z  ->  z  e.  F ) ) ) )
4140baibd 907 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  X )  ->  (
x  e.  ( J 
fLim  F )  <->  A. z  e.  J  ( x  e.  z  ->  z  e.  F ) ) )
4227, 38, 39, 41syl21anc 1227 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  (
x  e.  ( J 
fLim  F )  <->  A. z  e.  J  ( x  e.  z  ->  z  e.  F ) ) )
43 vex 3116 . . . . . . . . 9  |-  z  e. 
_V
4443inex1 4588 . . . . . . . 8  |-  ( z  i^i  Y )  e. 
_V
4544a1i 11 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  z  e.  J )  ->  (
z  i^i  Y )  e.  _V )
46 simpl3 1001 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  Y  e.  F )
47 elrest 14683 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  Y  e.  F )  ->  (
y  e.  ( Jt  Y )  <->  E. z  e.  J  y  =  ( z  i^i  Y ) ) )
4827, 46, 47syl2anc 661 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  (
y  e.  ( Jt  Y )  <->  E. z  e.  J  y  =  ( z  i^i  Y ) ) )
49 eleq2 2540 . . . . . . . . 9  |-  ( y  =  ( z  i^i 
Y )  ->  (
x  e.  y  <->  x  e.  ( z  i^i  Y
) ) )
50 elin 3687 . . . . . . . . . . 11  |-  ( x  e.  ( z  i^i 
Y )  <->  ( x  e.  z  /\  x  e.  Y ) )
5150rbaib 904 . . . . . . . . . 10  |-  ( x  e.  Y  ->  (
x  e.  ( z  i^i  Y )  <->  x  e.  z ) )
5251adantl 466 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  (
x  e.  ( z  i^i  Y )  <->  x  e.  z ) )
5349, 52sylan9bbr 700 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  y  =  ( z  i^i  Y
) )  ->  (
x  e.  y  <->  x  e.  z ) )
54 eleq1 2539 . . . . . . . . 9  |-  ( y  =  ( z  i^i 
Y )  ->  (
y  e.  ( Ft  Y )  <->  ( z  i^i 
Y )  e.  ( Ft  Y ) ) )
5554adantl 466 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  y  =  ( z  i^i  Y
) )  ->  (
y  e.  ( Ft  Y )  <->  ( z  i^i 
Y )  e.  ( Ft  Y ) ) )
5653, 55imbi12d 320 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  y  =  ( z  i^i  Y
) )  ->  (
( x  e.  y  ->  y  e.  ( Ft  Y ) )  <->  ( x  e.  z  ->  ( z  i^i  Y )  e.  ( Ft  Y ) ) ) )
5745, 48, 56ralxfr2d 4663 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  ( A. y  e.  ( Jt  Y ) ( x  e.  y  ->  y  e.  ( Ft  Y ) )  <->  A. z  e.  J  ( x  e.  z  ->  ( z  i^i  Y )  e.  ( Ft  Y ) ) ) )
5837, 42, 573bitr4d 285 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  (
x  e.  ( J 
fLim  F )  <->  A. y  e.  ( Jt  Y ) ( x  e.  y  ->  y  e.  ( Ft  Y ) ) ) )
5958pm5.32da 641 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  (
( x  e.  Y  /\  x  e.  ( J  fLim  F ) )  <-> 
( x  e.  Y  /\  A. y  e.  ( Jt  Y ) ( x  e.  y  ->  y  e.  ( Ft  Y ) ) ) ) )
6016, 59bitr4d 256 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  (
x  e.  ( ( Jt  Y )  fLim  ( Ft  Y ) )  <->  ( x  e.  Y  /\  x  e.  ( J  fLim  F
) ) ) )
61 ancom 450 . . . 4  |-  ( ( x  e.  Y  /\  x  e.  ( J  fLim  F ) )  <->  ( x  e.  ( J  fLim  F
)  /\  x  e.  Y ) )
62 elin 3687 . . . 4  |-  ( x  e.  ( ( J 
fLim  F )  i^i  Y
)  <->  ( x  e.  ( J  fLim  F
)  /\  x  e.  Y ) )
6361, 62bitr4i 252 . . 3  |-  ( ( x  e.  Y  /\  x  e.  ( J  fLim  F ) )  <->  x  e.  ( ( J  fLim  F )  i^i  Y ) )
6460, 63syl6bb 261 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  (
x  e.  ( ( Jt  Y )  fLim  ( Ft  Y ) )  <->  x  e.  ( ( J  fLim  F )  i^i  Y ) ) )
6564eqrdv 2464 1  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  (
( Jt  Y )  fLim  ( Ft  Y ) )  =  ( ( J  fLim  F )  i^i  Y ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814   E.wrex 2815   _Vcvv 3113    \ cdif 3473    i^i cin 3475    C_ wss 3476   ` cfv 5588  (class class class)co 6284   ↾t crest 14676   fBascfbas 18205  TopOnctopon 19190   Filcfil 20109    fLim cflim 20198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-oadd 7134  df-er 7311  df-en 7517  df-fin 7520  df-fi 7871  df-rest 14678  df-topgen 14699  df-fbas 18215  df-fg 18216  df-top 19194  df-bases 19196  df-topon 19197  df-ntr 19315  df-nei 19393  df-fil 20110  df-flim 20203
This theorem is referenced by:  cmetss  21516  minveclem4a  21608
  Copyright terms: Public domain W3C validator