MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimrest Structured version   Unicode version

Theorem flimrest 19578
Description: The set of limit points in a restricted topological space. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
flimrest  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  (
( Jt  Y )  fLim  ( Ft  Y ) )  =  ( ( J  fLim  F )  i^i  Y ) )

Proof of Theorem flimrest
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 988 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  J  e.  (TopOn `  X )
)
2 filelss 19447 . . . . . . 7  |-  ( ( F  e.  ( Fil `  X )  /\  Y  e.  F )  ->  Y  C_  X )
323adant1 1006 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  Y  C_  X )
4 resttopon 18787 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  Y  C_  X )  ->  ( Jt  Y )  e.  (TopOn `  Y ) )
51, 3, 4syl2anc 661 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  ( Jt  Y )  e.  (TopOn `  Y ) )
6 filfbas 19443 . . . . . . . 8  |-  ( F  e.  ( Fil `  X
)  ->  F  e.  ( fBas `  X )
)
763ad2ant2 1010 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  F  e.  ( fBas `  X
) )
8 simp3 990 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  Y  e.  F )
9 fbncp 19434 . . . . . . 7  |-  ( ( F  e.  ( fBas `  X )  /\  Y  e.  F )  ->  -.  ( X  \  Y )  e.  F )
107, 8, 9syl2anc 661 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  -.  ( X  \  Y )  e.  F )
11 simp2 989 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  F  e.  ( Fil `  X
) )
12 trfil3 19483 . . . . . . 7  |-  ( ( F  e.  ( Fil `  X )  /\  Y  C_  X )  ->  (
( Ft  Y )  e.  ( Fil `  Y )  <->  -.  ( X  \  Y
)  e.  F ) )
1311, 3, 12syl2anc 661 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  (
( Ft  Y )  e.  ( Fil `  Y )  <->  -.  ( X  \  Y
)  e.  F ) )
1410, 13mpbird 232 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  ( Ft  Y )  e.  ( Fil `  Y ) )
15 flimopn 19570 . . . . 5  |-  ( ( ( Jt  Y )  e.  (TopOn `  Y )  /\  ( Ft  Y )  e.  ( Fil `  Y ) )  ->  ( x  e.  ( ( Jt  Y ) 
fLim  ( Ft  Y ) )  <->  ( x  e.  Y  /\  A. y  e.  ( Jt  Y ) ( x  e.  y  ->  y  e.  ( Ft  Y ) ) ) ) )
165, 14, 15syl2anc 661 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  (
x  e.  ( ( Jt  Y )  fLim  ( Ft  Y ) )  <->  ( x  e.  Y  /\  A. y  e.  ( Jt  Y ) ( x  e.  y  ->  y  e.  ( Ft  Y ) ) ) ) )
17 simpll2 1028 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  z  e.  J )  ->  F  e.  ( Fil `  X
) )
18 simpll3 1029 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  z  e.  J )  ->  Y  e.  F )
19 elrestr 14388 . . . . . . . . . . 11  |-  ( ( F  e.  ( Fil `  X )  /\  Y  e.  F  /\  z  e.  F )  ->  (
z  i^i  Y )  e.  ( Ft  Y ) )
20193expia 1189 . . . . . . . . . 10  |-  ( ( F  e.  ( Fil `  X )  /\  Y  e.  F )  ->  (
z  e.  F  -> 
( z  i^i  Y
)  e.  ( Ft  Y ) ) )
2117, 18, 20syl2anc 661 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  z  e.  J )  ->  (
z  e.  F  -> 
( z  i^i  Y
)  e.  ( Ft  Y ) ) )
22 trfilss 19484 . . . . . . . . . . . 12  |-  ( ( F  e.  ( Fil `  X )  /\  Y  e.  F )  ->  ( Ft  Y )  C_  F
)
2317, 18, 22syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  z  e.  J )  ->  ( Ft  Y )  C_  F
)
2423sseld 3376 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  z  e.  J )  ->  (
( z  i^i  Y
)  e.  ( Ft  Y )  ->  ( z  i^i  Y )  e.  F
) )
25 inss1 3591 . . . . . . . . . . . 12  |-  ( z  i^i  Y )  C_  z
2625a1i 11 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  z  e.  J )  ->  (
z  i^i  Y )  C_  z )
27 simpl1 991 . . . . . . . . . . . 12  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  J  e.  (TopOn `  X )
)
28 toponss 18556 . . . . . . . . . . . 12  |-  ( ( J  e.  (TopOn `  X )  /\  z  e.  J )  ->  z  C_  X )
2927, 28sylan 471 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  z  e.  J )  ->  z  C_  X )
30 filss 19448 . . . . . . . . . . . . 13  |-  ( ( F  e.  ( Fil `  X )  /\  (
( z  i^i  Y
)  e.  F  /\  z  C_  X  /\  (
z  i^i  Y )  C_  z ) )  -> 
z  e.  F )
31303exp2 1205 . . . . . . . . . . . 12  |-  ( F  e.  ( Fil `  X
)  ->  ( (
z  i^i  Y )  e.  F  ->  ( z 
C_  X  ->  (
( z  i^i  Y
)  C_  z  ->  z  e.  F ) ) ) )
3231com24 87 . . . . . . . . . . 11  |-  ( F  e.  ( Fil `  X
)  ->  ( (
z  i^i  Y )  C_  z  ->  ( z  C_  X  ->  ( (
z  i^i  Y )  e.  F  ->  z  e.  F ) ) ) )
3317, 26, 29, 32syl3c 61 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  z  e.  J )  ->  (
( z  i^i  Y
)  e.  F  -> 
z  e.  F ) )
3424, 33syld 44 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  z  e.  J )  ->  (
( z  i^i  Y
)  e.  ( Ft  Y )  ->  z  e.  F ) )
3521, 34impbid 191 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  z  e.  J )  ->  (
z  e.  F  <->  ( z  i^i  Y )  e.  ( Ft  Y ) ) )
3635imbi2d 316 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  z  e.  J )  ->  (
( x  e.  z  ->  z  e.  F
)  <->  ( x  e.  z  ->  ( z  i^i  Y )  e.  ( Ft  Y ) ) ) )
3736ralbidva 2752 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  ( A. z  e.  J  ( x  e.  z  ->  z  e.  F )  <->  A. z  e.  J  ( x  e.  z  ->  ( z  i^i  Y
)  e.  ( Ft  Y ) ) ) )
38 simpl2 992 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  F  e.  ( Fil `  X
) )
393sselda 3377 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  x  e.  X )
40 flimopn 19570 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  (
x  e.  ( J 
fLim  F )  <->  ( x  e.  X  /\  A. z  e.  J  ( x  e.  z  ->  z  e.  F ) ) ) )
4140baibd 900 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  X )  ->  (
x  e.  ( J 
fLim  F )  <->  A. z  e.  J  ( x  e.  z  ->  z  e.  F ) ) )
4227, 38, 39, 41syl21anc 1217 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  (
x  e.  ( J 
fLim  F )  <->  A. z  e.  J  ( x  e.  z  ->  z  e.  F ) ) )
43 vex 2996 . . . . . . . . 9  |-  z  e. 
_V
4443inex1 4454 . . . . . . . 8  |-  ( z  i^i  Y )  e. 
_V
4544a1i 11 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  z  e.  J )  ->  (
z  i^i  Y )  e.  _V )
46 simpl3 993 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  Y  e.  F )
47 elrest 14387 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  Y  e.  F )  ->  (
y  e.  ( Jt  Y )  <->  E. z  e.  J  y  =  ( z  i^i  Y ) ) )
4827, 46, 47syl2anc 661 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  (
y  e.  ( Jt  Y )  <->  E. z  e.  J  y  =  ( z  i^i  Y ) ) )
49 eleq2 2504 . . . . . . . . 9  |-  ( y  =  ( z  i^i 
Y )  ->  (
x  e.  y  <->  x  e.  ( z  i^i  Y
) ) )
50 elin 3560 . . . . . . . . . . 11  |-  ( x  e.  ( z  i^i 
Y )  <->  ( x  e.  z  /\  x  e.  Y ) )
5150rbaib 898 . . . . . . . . . 10  |-  ( x  e.  Y  ->  (
x  e.  ( z  i^i  Y )  <->  x  e.  z ) )
5251adantl 466 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  (
x  e.  ( z  i^i  Y )  <->  x  e.  z ) )
5349, 52sylan9bbr 700 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  y  =  ( z  i^i  Y
) )  ->  (
x  e.  y  <->  x  e.  z ) )
54 eleq1 2503 . . . . . . . . 9  |-  ( y  =  ( z  i^i 
Y )  ->  (
y  e.  ( Ft  Y )  <->  ( z  i^i 
Y )  e.  ( Ft  Y ) ) )
5554adantl 466 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  y  =  ( z  i^i  Y
) )  ->  (
y  e.  ( Ft  Y )  <->  ( z  i^i 
Y )  e.  ( Ft  Y ) ) )
5653, 55imbi12d 320 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  y  =  ( z  i^i  Y
) )  ->  (
( x  e.  y  ->  y  e.  ( Ft  Y ) )  <->  ( x  e.  z  ->  ( z  i^i  Y )  e.  ( Ft  Y ) ) ) )
5745, 48, 56ralxfr2d 4529 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  ( A. y  e.  ( Jt  Y ) ( x  e.  y  ->  y  e.  ( Ft  Y ) )  <->  A. z  e.  J  ( x  e.  z  ->  ( z  i^i  Y )  e.  ( Ft  Y ) ) ) )
5837, 42, 573bitr4d 285 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  (
x  e.  ( J 
fLim  F )  <->  A. y  e.  ( Jt  Y ) ( x  e.  y  ->  y  e.  ( Ft  Y ) ) ) )
5958pm5.32da 641 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  (
( x  e.  Y  /\  x  e.  ( J  fLim  F ) )  <-> 
( x  e.  Y  /\  A. y  e.  ( Jt  Y ) ( x  e.  y  ->  y  e.  ( Ft  Y ) ) ) ) )
6016, 59bitr4d 256 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  (
x  e.  ( ( Jt  Y )  fLim  ( Ft  Y ) )  <->  ( x  e.  Y  /\  x  e.  ( J  fLim  F
) ) ) )
61 ancom 450 . . . 4  |-  ( ( x  e.  Y  /\  x  e.  ( J  fLim  F ) )  <->  ( x  e.  ( J  fLim  F
)  /\  x  e.  Y ) )
62 elin 3560 . . . 4  |-  ( x  e.  ( ( J 
fLim  F )  i^i  Y
)  <->  ( x  e.  ( J  fLim  F
)  /\  x  e.  Y ) )
6361, 62bitr4i 252 . . 3  |-  ( ( x  e.  Y  /\  x  e.  ( J  fLim  F ) )  <->  x  e.  ( ( J  fLim  F )  i^i  Y ) )
6460, 63syl6bb 261 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  (
x  e.  ( ( Jt  Y )  fLim  ( Ft  Y ) )  <->  x  e.  ( ( J  fLim  F )  i^i  Y ) ) )
6564eqrdv 2441 1  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  (
( Jt  Y )  fLim  ( Ft  Y ) )  =  ( ( J  fLim  F )  i^i  Y ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2736   E.wrex 2737   _Vcvv 2993    \ cdif 3346    i^i cin 3348    C_ wss 3349   ` cfv 5439  (class class class)co 6112   ↾t crest 14380   fBascfbas 17826  TopOnctopon 18521   Filcfil 19440    fLim cflim 19529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-int 4150  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-om 6498  df-1st 6598  df-2nd 6599  df-recs 6853  df-rdg 6887  df-oadd 6945  df-er 7122  df-en 7332  df-fin 7335  df-fi 7682  df-rest 14382  df-topgen 14403  df-fbas 17836  df-fg 17837  df-top 18525  df-bases 18527  df-topon 18528  df-ntr 18646  df-nei 18724  df-fil 19441  df-flim 19534
This theorem is referenced by:  cmetss  20847  minveclem4a  20939
  Copyright terms: Public domain W3C validator