MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimclslem Structured version   Visualization version   Unicode version

Theorem flimclslem 20992
Description: Lemma for flimcls 20993. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
flimcls.2  |-  F  =  ( X filGen ( fi
`  ( ( ( nei `  J ) `
 { A }
)  u.  { S } ) ) )
Assertion
Ref Expression
flimclslem  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( F  e.  ( Fil `  X
)  /\  S  e.  F  /\  A  e.  ( J  fLim  F )
) )

Proof of Theorem flimclslem
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 flimcls.2 . . 3  |-  F  =  ( X filGen ( fi
`  ( ( ( nei `  J ) `
 { A }
)  u.  { S } ) ) )
2 topontop 19934 . . . . . . . . 9  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
323ad2ant1 1028 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  J  e.  Top )
4 eqid 2450 . . . . . . . . 9  |-  U. J  =  U. J
54neisspw 20116 . . . . . . . 8  |-  ( J  e.  Top  ->  (
( nei `  J
) `  { A } )  C_  ~P U. J )
63, 5syl 17 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( ( nei `  J ) `  { A } )  C_  ~P U. J )
7 toponuni 19935 . . . . . . . . 9  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
873ad2ant1 1028 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  X  =  U. J )
98pweqd 3955 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ~P X  =  ~P U. J )
106, 9sseqtr4d 3468 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( ( nei `  J ) `  { A } )  C_  ~P X )
11 toponmax 19936 . . . . . . . . . 10  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
12 elpw2g 4565 . . . . . . . . . 10  |-  ( X  e.  J  ->  ( S  e.  ~P X  <->  S 
C_  X ) )
1311, 12syl 17 . . . . . . . . 9  |-  ( J  e.  (TopOn `  X
)  ->  ( S  e.  ~P X  <->  S  C_  X
) )
1413biimpar 488 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  ->  S  e.  ~P X )
15143adant3 1027 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  S  e.  ~P X )
1615snssd 4116 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  { S }  C_  ~P X )
1710, 16unssd 3609 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( (
( nei `  J
) `  { A } )  u.  { S } )  C_  ~P X )
18 ssun2 3597 . . . . . 6  |-  { S }  C_  ( ( ( nei `  J ) `
 { A }
)  u.  { S } )
19113ad2ant1 1028 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  X  e.  J )
20 simp2 1008 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  S  C_  X
)
2119, 20ssexd 4549 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  S  e.  _V )
22 snnzg 4088 . . . . . . 7  |-  ( S  e.  _V  ->  { S }  =/=  (/) )
2321, 22syl 17 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  { S }  =/=  (/) )
24 ssn0 3766 . . . . . 6  |-  ( ( { S }  C_  ( ( ( nei `  J ) `  { A } )  u.  { S } )  /\  { S }  =/=  (/) )  -> 
( ( ( nei `  J ) `  { A } )  u.  { S } )  =/=  (/) )
2518, 23, 24sylancr 668 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( (
( nei `  J
) `  { A } )  u.  { S } )  =/=  (/) )
2620, 8sseqtrd 3467 . . . . . . . . . . 11  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  S  C_  U. J
)
27 simp3 1009 . . . . . . . . . . 11  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  A  e.  ( ( cls `  J
) `  S )
)
284neindisj 20126 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  S  C_  U. J )  /\  ( A  e.  ( ( cls `  J
) `  S )  /\  x  e.  (
( nei `  J
) `  { A } ) ) )  ->  ( x  i^i 
S )  =/=  (/) )
2928expr 619 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  S  C_  U. J )  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( x  e.  ( ( nei `  J
) `  { A } )  ->  (
x  i^i  S )  =/=  (/) ) )
303, 26, 27, 29syl21anc 1266 . . . . . . . . . 10  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( x  e.  ( ( nei `  J
) `  { A } )  ->  (
x  i^i  S )  =/=  (/) ) )
3130imp 431 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  /\  x  e.  ( ( nei `  J
) `  { A } ) )  -> 
( x  i^i  S
)  =/=  (/) )
32 elsni 3992 . . . . . . . . . . 11  |-  ( y  e.  { S }  ->  y  =  S )
3332ineq2d 3633 . . . . . . . . . 10  |-  ( y  e.  { S }  ->  ( x  i^i  y
)  =  ( x  i^i  S ) )
3433neeq1d 2682 . . . . . . . . 9  |-  ( y  e.  { S }  ->  ( ( x  i^i  y )  =/=  (/)  <->  ( x  i^i  S )  =/=  (/) ) )
3531, 34syl5ibrcom 226 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  /\  x  e.  ( ( nei `  J
) `  { A } ) )  -> 
( y  e.  { S }  ->  ( x  i^i  y )  =/=  (/) ) )
3635ralrimiv 2799 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  /\  x  e.  ( ( nei `  J
) `  { A } ) )  ->  A. y  e.  { S }  ( x  i^i  y )  =/=  (/) )
3736ralrimiva 2801 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  A. x  e.  ( ( nei `  J
) `  { A } ) A. y  e.  { S }  (
x  i^i  y )  =/=  (/) )
38 simp1 1007 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  J  e.  (TopOn `  X ) )
394clsss3 20067 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  ( ( cls `  J ) `  S
)  C_  U. J )
403, 26, 39syl2anc 666 . . . . . . . . . . . 12  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( ( cls `  J ) `  S )  C_  U. J
)
4140, 27sseldd 3432 . . . . . . . . . . 11  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  A  e.  U. J )
4241, 8eleqtrrd 2531 . . . . . . . . . 10  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  A  e.  X )
4342snssd 4116 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  { A }  C_  X )
44 snnzg 4088 . . . . . . . . . 10  |-  ( A  e.  ( ( cls `  J ) `  S
)  ->  { A }  =/=  (/) )
45443ad2ant3 1030 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  { A }  =/=  (/) )
46 neifil 20888 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  { A }  C_  X  /\  { A }  =/=  (/) )  -> 
( ( nei `  J
) `  { A } )  e.  ( Fil `  X ) )
4738, 43, 45, 46syl3anc 1267 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( ( nei `  J ) `  { A } )  e.  ( Fil `  X
) )
48 filfbas 20856 . . . . . . . 8  |-  ( ( ( nei `  J
) `  { A } )  e.  ( Fil `  X )  ->  ( ( nei `  J ) `  { A } )  e.  (
fBas `  X )
)
4947, 48syl 17 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( ( nei `  J ) `  { A } )  e.  ( fBas `  X
) )
50 ne0i 3736 . . . . . . . . . . 11  |-  ( A  e.  ( ( cls `  J ) `  S
)  ->  ( ( cls `  J ) `  S )  =/=  (/) )
51503ad2ant3 1030 . . . . . . . . . 10  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( ( cls `  J ) `  S )  =/=  (/) )
52 cls0 20089 . . . . . . . . . . 11  |-  ( J  e.  Top  ->  (
( cls `  J
) `  (/) )  =  (/) )
533, 52syl 17 . . . . . . . . . 10  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( ( cls `  J ) `  (/) )  =  (/) )
5451, 53neeqtrrd 2697 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( ( cls `  J ) `  S )  =/=  (
( cls `  J
) `  (/) ) )
55 fveq2 5863 . . . . . . . . . 10  |-  ( S  =  (/)  ->  ( ( cls `  J ) `
 S )  =  ( ( cls `  J
) `  (/) ) )
5655necon3i 2655 . . . . . . . . 9  |-  ( ( ( cls `  J
) `  S )  =/=  ( ( cls `  J
) `  (/) )  ->  S  =/=  (/) )
5754, 56syl 17 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  S  =/=  (/) )
58 snfbas 20874 . . . . . . . 8  |-  ( ( S  C_  X  /\  S  =/=  (/)  /\  X  e.  J )  ->  { S }  e.  ( fBas `  X ) )
5920, 57, 19, 58syl3anc 1267 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  { S }  e.  ( fBas `  X ) )
60 fbunfip 20877 . . . . . . 7  |-  ( ( ( ( nei `  J
) `  { A } )  e.  (
fBas `  X )  /\  { S }  e.  ( fBas `  X )
)  ->  ( -.  (/) 
e.  ( fi `  ( ( ( nei `  J ) `  { A } )  u.  { S } ) )  <->  A. x  e.  ( ( nei `  J
) `  { A } ) A. y  e.  { S }  (
x  i^i  y )  =/=  (/) ) )
6149, 59, 60syl2anc 666 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( -.  (/) 
e.  ( fi `  ( ( ( nei `  J ) `  { A } )  u.  { S } ) )  <->  A. x  e.  ( ( nei `  J
) `  { A } ) A. y  e.  { S }  (
x  i^i  y )  =/=  (/) ) )
6237, 61mpbird 236 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  -.  (/)  e.  ( fi `  ( ( ( nei `  J
) `  { A } )  u.  { S } ) ) )
63 fsubbas 20875 . . . . . 6  |-  ( X  e.  J  ->  (
( fi `  (
( ( nei `  J
) `  { A } )  u.  { S } ) )  e.  ( fBas `  X
)  <->  ( ( ( ( nei `  J
) `  { A } )  u.  { S } )  C_  ~P X  /\  ( ( ( nei `  J ) `
 { A }
)  u.  { S } )  =/=  (/)  /\  -.  (/) 
e.  ( fi `  ( ( ( nei `  J ) `  { A } )  u.  { S } ) ) ) ) )
6419, 63syl 17 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( ( fi `  ( ( ( nei `  J ) `
 { A }
)  u.  { S } ) )  e.  ( fBas `  X
)  <->  ( ( ( ( nei `  J
) `  { A } )  u.  { S } )  C_  ~P X  /\  ( ( ( nei `  J ) `
 { A }
)  u.  { S } )  =/=  (/)  /\  -.  (/) 
e.  ( fi `  ( ( ( nei `  J ) `  { A } )  u.  { S } ) ) ) ) )
6517, 25, 62, 64mpbir3and 1190 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( fi `  ( ( ( nei `  J ) `  { A } )  u.  { S } ) )  e.  ( fBas `  X
) )
66 fgcl 20886 . . . 4  |-  ( ( fi `  ( ( ( nei `  J
) `  { A } )  u.  { S } ) )  e.  ( fBas `  X
)  ->  ( X filGen ( fi `  (
( ( nei `  J
) `  { A } )  u.  { S } ) ) )  e.  ( Fil `  X
) )
6765, 66syl 17 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( X filGen ( fi `  (
( ( nei `  J
) `  { A } )  u.  { S } ) ) )  e.  ( Fil `  X
) )
681, 67syl5eqel 2532 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  F  e.  ( Fil `  X ) )
69 fvex 5873 . . . . . 6  |-  ( ( nei `  J ) `
 { A }
)  e.  _V
70 snex 4640 . . . . . 6  |-  { S }  e.  _V
7169, 70unex 6586 . . . . 5  |-  ( ( ( nei `  J
) `  { A } )  u.  { S } )  e.  _V
72 ssfii 7930 . . . . 5  |-  ( ( ( ( nei `  J
) `  { A } )  u.  { S } )  e.  _V  ->  ( ( ( nei `  J ) `  { A } )  u.  { S } )  C_  ( fi `  ( ( ( nei `  J ) `
 { A }
)  u.  { S } ) ) )
7371, 72ax-mp 5 . . . 4  |-  ( ( ( nei `  J
) `  { A } )  u.  { S } )  C_  ( fi `  ( ( ( nei `  J ) `
 { A }
)  u.  { S } ) )
74 ssfg 20880 . . . . . 6  |-  ( ( fi `  ( ( ( nei `  J
) `  { A } )  u.  { S } ) )  e.  ( fBas `  X
)  ->  ( fi `  ( ( ( nei `  J ) `  { A } )  u.  { S } ) )  C_  ( X filGen ( fi `  ( ( ( nei `  J ) `  { A } )  u.  { S } ) ) ) )
7565, 74syl 17 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( fi `  ( ( ( nei `  J ) `  { A } )  u.  { S } ) )  C_  ( X filGen ( fi `  ( ( ( nei `  J ) `  { A } )  u.  { S } ) ) ) )
7675, 1syl6sseqr 3478 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( fi `  ( ( ( nei `  J ) `  { A } )  u.  { S } ) )  C_  F )
7773, 76syl5ss 3442 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( (
( nei `  J
) `  { A } )  u.  { S } )  C_  F
)
78 snssg 4104 . . . . 5  |-  ( S  e.  _V  ->  ( S  e.  ( (
( nei `  J
) `  { A } )  u.  { S } )  <->  { S }  C_  ( ( ( nei `  J ) `
 { A }
)  u.  { S } ) ) )
7921, 78syl 17 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( S  e.  ( ( ( nei `  J ) `  { A } )  u.  { S } )  <->  { S }  C_  ( ( ( nei `  J ) `
 { A }
)  u.  { S } ) ) )
8018, 79mpbiri 237 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  S  e.  ( ( ( nei `  J ) `  { A } )  u.  { S } ) )
8177, 80sseldd 3432 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  S  e.  F )
8277unssad 3610 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( ( nei `  J ) `  { A } )  C_  F )
83 elflim 20979 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  ( A  e.  ( J  fLim  F )  <->  ( A  e.  X  /\  (
( nei `  J
) `  { A } )  C_  F
) ) )
8438, 68, 83syl2anc 666 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( A  e.  ( J  fLim  F
)  <->  ( A  e.  X  /\  ( ( nei `  J ) `
 { A }
)  C_  F )
) )
8542, 82, 84mpbir2and 932 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  A  e.  ( J  fLim  F ) )
8668, 81, 853jca 1187 1  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( F  e.  ( Fil `  X
)  /\  S  e.  F  /\  A  e.  ( J  fLim  F )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 984    = wceq 1443    e. wcel 1886    =/= wne 2621   A.wral 2736   _Vcvv 3044    u. cun 3401    i^i cin 3402    C_ wss 3403   (/)c0 3730   ~Pcpw 3950   {csn 3967   U.cuni 4197   ` cfv 5581  (class class class)co 6288   ficfi 7921   fBascfbas 18951   filGencfg 18952   Topctop 19910  TopOnctopon 19911   clsccl 20026   neicnei 20106   Filcfil 20853    fLim cflim 20942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-rep 4514  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-nel 2624  df-ral 2741  df-rex 2742  df-reu 2743  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-pss 3419  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-tp 3972  df-op 3974  df-uni 4198  df-int 4234  df-iun 4279  df-iin 4280  df-br 4402  df-opab 4461  df-mpt 4462  df-tr 4497  df-eprel 4744  df-id 4748  df-po 4754  df-so 4755  df-fr 4792  df-we 4794  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-pred 5379  df-ord 5425  df-on 5426  df-lim 5427  df-suc 5428  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-ov 6291  df-oprab 6292  df-mpt2 6293  df-om 6690  df-wrecs 7025  df-recs 7087  df-rdg 7125  df-1o 7179  df-oadd 7183  df-er 7360  df-en 7567  df-fin 7570  df-fi 7922  df-fbas 18960  df-fg 18961  df-top 19914  df-topon 19916  df-cld 20027  df-ntr 20028  df-cls 20029  df-nei 20107  df-fil 20854  df-flim 20947
This theorem is referenced by:  flimcls  20993
  Copyright terms: Public domain W3C validator